
M.Sc.Computer Science

PAPER - 6

INTERNET PROGRAMMING

AND WEB DESIGN

BHARATHIAR UNIVERSITY
SCHOOL OF DISTANCE EDUCATION

COIMBATORE

PAPER- 6 INTERNET PROGRAMMING AND WEB DESIGN

Subject Description: This Paper presents introduction to internet, HTML,

Java script and Dynamic HTML.

Goals: To enable the students to write programs for internet and to develop

web applications.

Objectives: On successful completion of the student should have:

L Understood the internet.

L Learnt HTML. Intermediate HTML and dynamic HTML

L Learnt Java Script.

Unit I

Introduction to computers and the Internet: history of the world wide web

Hardware trends – The say software trend: Object Technology – Java Script:

Object – based scripting for the web – browser portability.

Introduction to HTML : Introduction – markup language – editing HTML –

common tags – headers – text styling – liking images – formatting text with

 special characters, horizontal rules and more line breaks – internet

and www resources.

Intermediate HTML : Introduction – Unordered Lists – nested and ordered

lists – basic HTML tables – intermediate HTML tables and formatting – basic

HTML forms – more complex HTML forms – internal liking – creating and using

images maps <META> Tags, <FRAMESET> tags – internet and www resources.

Unit II

Java Script – Introduction to scripting: Introduction – memory concepts –

arithmetic – decision making – java script internet & www resources.

Java script control structures : If , if / else selection structure while, for do/

while repetition structure – switch multiple – selection structure – break and

continue Statements – Laballed Break and continue Statements – Logical

Operators.

Java Script Functions : Introduction – Program Modules in Java Script –

programmer – Defined Functions – Functions – Duration of Identifiers – Scope

Rules – Recursion – Recursion Vs Iteration – Java Script Global Functions.

Unit III

Java Script Arrays: Introduction – Arrays – Declaring and Allocating

Arrays – References and References Parameters – Passing Arrays to functions

– Sorting Arrays – searching Arrays – Multiple Subscripted Arrays.

Java Script Objects: Introduction – Thinking about Objects – Math String,

Data, bookan and Number Objects.

Dynamic HTML : CSS : Introduction – Inline Styles – Creating Style Sheets

with the Style Element – Conflicting Styles – Linking External Style Sheets –

Positioning Elements – Backgrounds – Element Dimensions – Text flow and

the Box model – user Style Sheets – Internet & www resources.

Unit IV

Dynamic HTML: Object model and collections: Introduction – Object

Referencing – Collections all and Children – Dynamic Styles – Dynamic

Positioning – using the Frames Collection – navigator object.

Dynamic HTML : Event model : Introduction – event ON CLICK – Event ON

LOAD – error handling with ON ERROR – Tracking the mouse with event

ON MOUSE MOVE – Rollovers with ON MOUSE OVER and ONBLUR – more

form processing with ON SUBMIT and ON RESET – event Bubbling more DHTML

events.

Dynamic HTML : Filters and Transitions : Introduction – Flip filters : Flipu

and Fliph – transparency with the Chroma filter – Creating Images filters :

Invert, Gray and x ray – Adding Shadows to Text – Creating Gradients with

Alpha – Making Text Glow – Creating Motion with blur – using the Wave filter

– Advanced filters : Drop Shadow and Light – Transitions I : Filter Transition II

: Filter Reveal Trans.

Dynamic HTML : client Side Scripting with VB Script : Introduction – Operators

– Data Types and Control Structures – VB Script Functions – Arrays – String

manipulation Classes and Objects – Internet & www resources.

Unit V

Active Server Pages (ASP): Introduction – How ASP Work – Client – Side

Scripting Versus – Server Side Scripting – Using Personnel Web Server or

Internet Information Server – Server – Side Activex Components – File

System Objects Session Tracking and cookies – Accessing a Database form an

ASP – Internet & www resources.

CGI and Perl : CGI - Introduction to Perl – Configuring Personal Web Server

or Perl/CGI – String Processing and Regular Expressions – Viewing Client/

Server Environment Variables – Form Processing and Business Logic – Server

– Side Includes – verifying a username and password – sending E-Mail from a

web browser – using ODBC to connect to a Database – cookies and Perl –

Internet & www resources.

XML : Introduction – Structuring Data – Document Type Definitions –

Customized Markup Language – XML Parsers – XHTML – Internet & www

resources.

Reference Books:

1. Deitel, Deitel, Nieto, “Internet and World Wide Web – How to

program”, Pearson Education Asia, 2003.

2 Thomas A. Powell, “The Complete Reference HTML and XHTML”, fourth

Edition, Tata McGraw Hill Pub. Company Ltd.

3 Achyut s. Godbole, Atul Kahate, “Web Technologies – TCP / IP to

Internet Application Architectures”, Tata McGraw – Hill Pub. Company

Ltd, 2003.

CONTENTS

Lesson 1 : Introduction to Internet and World Wide Web 1

Lesson 2 : Introduction to HTML 9

Lesson 3 - Intermediate HTML 39

Lesson 4: JavaScript – Basics 67

Lesson 5 : JavaScript – Control Structures 89

Lesson 6 : JavaScript – Functions 105

Lesson 7: JavaScript – Arrays 117

Lesson 8: JavaScript – Objects 135

Lesson 9: Cascading Style Sheet (CSS) 157

Lesson 10: Dynamic HTML: Object Model and Collections 179

Lesson 11: Dynamic HTML - Event Model 197

Lesson 12 : Java Script - Filters and Transitions 211

Lesson 13: VBScript – I 227

Lesson 14 : VBScript – II 257

Lesson 15 : Active Server Pages – I 297

Lesson 16: ASP – using ODBC 347

Lesson 17 : CGI and PERL 367

Lesson 18 : PERL ODBC and Cookies 405

Lesson 19 : XML 425

 1

Lesson 1

Introduction to Internet and World Wide Web

Content

1.0 Aim and Objective

1.1. Introduction

1.2. History of the Internet

1.3. History of the World Wide Web

1.4. World Wide Web Consortium (W3C)

1.5. Hardware Trends

1.6. Software Trend : Object Technology

1.7. JavaScript : Object based Scripting for the Web

1.8. Browser Portability

1.9. Let us sum Up

1.10. Lesson end Activities

1.11. Check your progress

1.12. Reference

1.0 Aim and Objective

1.1 Introduction

• To understand Internet concepts

• To learn the software and hardware trends

1.2. History of the Internet

The Internet is a collection of networks, including the Arpanet,

NSFnet, regional networks such as NYsernet, local networks at a number of

University and research institutions, and a number of military networks.

 The term "Internet" applies to this entire set of networks. The subset of

them that is managed by the Department of Defense is referred to as the

"DDN" (Defense Data Network). This includes some research-oriented

 2

networks, such as the Arpanet, as well as more strictly military ones. All of

these networks are connected to each other. Users can send messages from

any of them to any other, except where there is security or other policy

restrictions on access. Officially speaking, the Internet protocol documents

are simply standards adopted by the Internet community for its own use.

More recently, the Department of Defense issued a MILSPEC definition of

TCP/IP. This was intended to be a more formal definition, appropriate for use

in purchasing specifications. However most of the TCP/IP community

continues to use the Internet standards. The MILSPEC version is intended to

be consistent with it.

Whatever it is called, TCP/IP is a family of protocols. TCP/IP is a set of

protocols developed to allow cooperating computers to share resources across a

network. It was developed by a community of researchers centered on the

ARPAnet. Certainly the ARPAnet is the best-known TCP/IP network. However

as of June, 87, at least 130 different vendors had products that support

TCP/IP, and thousands of networks of all kinds use it.

Thus the most important TCP/IP services are:

File Transfer

The file transfer protocol (FTP) allows a user on any computer to get

files from another computer, or to send files to another computer. Provisions

are made for handling file transfer between machines with different character

set, end of line conventions, etc.

Remote login

The network terminal protocol (TELNET) allows a user to log in on any

other computer on the network. You start a remote session by specifying a

computer to connect to. From that time until you finish the session, anything

you type is sent to the other computer Generally, the connection to the

remote computer behaves much like a dialup connection.

Email

This allows you to send messages to users on other computers.

Originally, people tended to use only one or two specific computers. They

 3

would maintain "mail files" on those machines. The computer mail system is

simply a way for you to add a message to another user's mail file.

 Network File Systems

This allows a system to access files on another computer. A network file

system provides the illusion that disks or other devices from one system are

directly connected to other systems. There is no need to use a special network

utility to access a file on another system. Your computer simply thinks it has

some extra disk drives. These extra "virtual" drives refer to the other system's

disks.

Remote Printing

This allows you to access printers on other computers as if they were

directly attached to yours.

Remote Execution

This allows you to request that a particular program be run on a different

computer. This is useful when you can do most of your work on a small

computer, but a few tasks require the resources of a larger system.

Name Servers

 In large installations, there are a number of different collections of

names that have to be managed. This includes users and their passwords,

names and network addresses for computers, and accounts. It becomes very

tedious to keep this data up to date on all of the computers. Thus the

databases are kept on a small number of systems. Other systems access the

data over the network.

Terminal Servers

Many installations no longer connect terminals directly to computers.

Instead they connect them to terminal servers. A terminal server is simply a

small computer that only knows how to run telnet If your terminal is

connected to one of these, you simply type the name of a computer, and

you are connected to it. Generally it is possible to have active connections to

more than one computer at the same time.

1.3. History of the World Wide Web

 4

 The World Wide Web allows computer users to locate and view

multimedia based documents on almost any subject. Even though the Internet

was developed decades ago, the introduction of the World Wide Web is a

relatively recent event. In 1990 TIM Berners-Lee of CERN developed the World

Wide Web and several communication protocols that form the backbone of the

Web. The use of the Web exploded with the availability in 1993 of the Mosaic

browser, which featured a user-friendly graphical interface. Marc Andreesen,

whose team at the National Center for Supercomputing Applications developed

Mosaic, went on to found Netscape, the company that many people credit with

initiating the explosive Internet economy of the late 1990s.

1.4. World Wide Web Consortium (W3C)

 In October 1994, Tim Berners-Lee founded an organization - called

World Wide Web Consortium (W3C) devoted to developing nonproprietary,

interoperable technologies for the World Wide Web. One of the W3C’s primary

goals is to make the Web universally accessible – regardless of ability, language

or culture.

 The W3C is also a standardization organization. Web technologies

standardized by the W3C are called Recommendations. W3C Recommendations

include the Extensible HyperText Markup Language (XHTML), Cascading Style

Sheets (CSS) and Extensible Markup Language. A recommendation is not an

actual software product, but a document that specifies a technology’s role,

syntax rules and so forth.

 The W3C comprises three primary hosts – the Massachusetts Institute of

technology(MIT), the European Research Consortium for Informatics and

Mathematics(ERCIM) and Keio University in Japan – and hundreds of members.

The W3C home page (www.w3.org) provide extensive resources on Internet and

Web technologies.

1.5. Hardware Trends

 The Internet community thrives on the continuing stream of dramatic

improvements in hardware, software and communications technologies. Every

year, the capacities of computer tend to double, especially the amount of

 5

memory they have in which to execute programs, the amount of secondary

storage they have to hold programs and data over the longer term, and the

processor speeds.

 Recently, the hardware has been moving more and more towards mobile,

wireless technology. Small hand-held devices are now more powerful than the

super computers of the early 1970s. Portability has become a major focus for

the computer industry. Wireless data transfer speeds have become so fast that

many Internet users’ primary access to the Web is through local wireless

networks.

1.6. Software Trend : Object Technology

 Objects are essentially reusable software components that model real-

world items. Software developers are discovering that using a modular, object

oriented design and implementation approach can make software development

groups much more productive that were possible with previous popular

programming techniques, such as structured programming. Object-oriented

programs are often easier to understand, correct and modify.

 With object technology, properly designed software tends to be more

reusable in future projects. Libraries of reusable components, such as Microsoft

Foundation Classes(MFC), Sun Microsystems’s Java Foundation Classes,

Microsoft’s .NET Framework Class Library (FCL) and those produced by other

software development organization can greatly reduce the effort it takes to

implement certain kinds of systems.

1.7. JavaScript : Object Based Scripting for the Web

 JavaScript is an object-based scripting language with strong support for

proper software engineering techniques. JacaScript is a powerful scripting

language. Experienced programmers sometimes take pride in creating strange,

contorted, convoluted JavaScript expressions.

 JavaScript was created by Netscape. Microsoft’s version of JavaScript

calles Jscript. Both Netscape and Microsoft have been instrumental in the

standardization of JavaScript and Jscript by ECMA.

 6

1.8. Browser Portability

 Ensuring a consistent look and feel on client browser is one of the great

challenges of developing Web-based applications. Currently, a standard does

not exist to which software developers must adhere when creating Web

browsers. Although browsers share a common set of features, each browser

might render pages differently. Browsers are available in many version and on

many different platforms. It is difficult to develop Web pages that render

correctly on all version of each browser.

1.9. Let us Sum Up

The Internet is a collection of networks. The term "Internet" applies to

this entire set of networks. The subset of them that is managed by the

Department of Defense is referred to as the "DDN" (Defense Data Network).

This includes some research-oriented networks, such as the Arpanet, as well

as more strictly military ones. All of these networks are connected to each

other.

TCP/IP is a set of protocols developed to allow cooperating computers to

share resources across a network. It was developed by a community of

researchers centered on the ARPAnet. Certainly the ARPAnet is the best-known

TCP/IP network.

Thus the most important TCP/IP services are:

File Transfer

Remote login

Email

Network File Systems

Remote Printing

Remote Execution

Name Servers

Terminal Servers

 7

 The World Wide Web allows computer users to locate and view

multimedia based documents on almost any subject. The use of the Web

exploded with the availability in 1993 of the Mosaic browser, which featured a

user-friendly graphical interface. Marc Andreesen, whose team at the National

Center for Supercomputing Applications developed Mosaic, went on to found

Netscape, the company that many people credit with initiating the explosive

Internet economy of the late 1990s.

 In October 1994, Tim Berners-Lee founded an organization - called

World Wide Web Consortium (W3C) devoted to developing nonproprietary,

interoperable technologies for the World Wide Web. One of the W3C’s primary

goals is to make the Web universally accessible – regardless of ability, language

or culture.

 The W3C is also a standardization organization. Web technologies

standardized by the W3C are called Recommendations.

 Recently, the hardware has been moving more and more towards mobile,

wireless technology. Small hand-held devices are now more powerful than the

super computers of the early 1970s. Portability has become a major focus for

the computer industry. Wireless data transfer speeds have become so fast that

many Internet users’ primary access to the Web is through local wireless

networks.

 Objects are essentially reusable software components that model real-

world items. With object technology, properly designed software tends to be

more reusable in future projects. Libraries of reusable components, such as

Microsoft Foundation Classes(MFC), Sun Microsystems’s Java Foundation

Classes, Microsoft’s .NET Framework Class Library (FCL) and those produced

by other software development organization can greatly reduce the effort it

takes to implement certain kinds of systems.

 JavaScript is an object-based scripting language with strong support for

proper software engineering techniques. JavaScript was created by Netscape.

Microsoft’s version of JavaScript calles Jscript. Both Netscape and Microsoft

 8

have been instrumental in the standardization of JavaScript and Jscript by

ECMA.

Browsers are available in many version and on many different platforms.

It is difficult to develop Web pages that render correctly on all version of each

browser.

1.10. Lesson end Activities

 1. What is Internet?

 2. What is the W3C?

1.11. Check your progress

 1. Describe Object based scripting

 2. What is the software and hardware trends in Internet?

1.12.Reference

1. Internet & World Wide Web – How to Programe , H.M. Deitel, P.J.Deitel

and A.B.Goldberg

2. www.netforbeginners.com

3. www.w3.org

 9

Lesson 2

Introduction to HTML

Contents

2.0. Aim and Objective

2.1. Introduction

2.2. Common Tags

2.3. Formatting TAGS

2.4. Special Characters

2.5. Horizontal Rule and Line Break

2.6. Inserting Images

2.7. Let us Sum UP

2.8. Lesson end Activities

2.9. Check Your progress

2.10. Reference

2.0. Aim and Objective

• To Understand Markup language.

• To learn Basic syntax for writing a web page.

2.1. Introduction

Hypertext Markup language (HTML) is a system for marking up

documents with informational tags that indicates how text in the documents

should be presented and how the documents are linked.

HTML is defined as Standard Generalised Markup Language(SGML),

Document Type Definition(DTD).

Hypertext is text that is not constrained to be linear. Hypertext organizes

information as an interconnected web of linked text. Hypermedia applications

encompass graphics, video, sound and more. On an HTML hypertext page, the

highlighted text that serves as the start of a link is called an anchor.

 10

HTML stands for Hypertext Markup Language. HTML is not compiled but

interpreted line by line by the Web Browser. HTML uses tags which direct the

Web Browser to display the contents enclosed in the tag in the directed way.

There are only a few general syntax rules to learn in constructing Web

documents in HTML. Every HTML document or page is divided into two parts, a

head and a body. The head contains information about the document and the

body contains the text of the document.

Every markup tag has a tag ID and possibly some attributes. Markup

tags are either empty or nonempty. Nonempty tags act upon text enclosed in a

pair of starting and ending tags. A starting tag begins with the left angle bracket

(<) followed immediately by the tag ID, any attributes, then the right angle

bracket (>) to close the tag. Ending tags are exactly the same except that there

is a (/) slash immediately between the opening bracket and the tag ID and

ending tags cannot contain any attributes. If the tag is an empty tag, then there

is no enclosed text and the ending tag is omitted.

Tags are special codes that wrap around various content to affect the

content. Tags usually go in pairs.

<tagname> some text </tagname>

Tags represents the essence of HTML; whenever you want to make your

text bold, insert an image or table, add music to your page, you use tags. HTML

is essentially a bunch of tags with even more text. Once you learn the syntax of

these tags, you can call yourself a HTML expert!

Editing HTML

 Editing HTML code we need a text editor. We can use any text editor for

example notepad in Windows. We should save the code as .html extension. In

windows, it is .htm extension. To run the code or view the output, we have to

just click the programe. If any of the browser already loaded in your system it

will automatically execute the programe or you can run with the help of open in

the browser open menu or you just type the file name with path in the URL

window of the browser.

 11

HTML Page Structure

<HTML>

<HEAD>

 <TITLE> Title of the Web Page </TITLE>

</HEAD>

<BODY>

 .

 .

 .

</BODY>

</HTML>

TITLE is placed in the HEAD section. Otherwise, there is no distinction

between the HEAD and the BODY parts of an HTML page. However, some older

browsers do not display colors correctly if the HEAD section contains any HTML

tags other than the <TITLE> tag.

2.2. Common Tags - Creating your first web page

Now that you have a vague idea of what tags are, you're ready to learn

about the basic tags that make up a basic web page.

The below lists the complete syntax used in creating a very basic web

<html>

</html>

Specifies that this is an HTML document. All html documents

begin and end with this tag.

<head>

</head>

Creates a container for meta information, such as the

document's title, keywords and description info for search engine

crawling, etc to be added to the document.

<title>

</title>

Creates a "title" for the document. Anything you add inside this

tag, the browser displays it in the title bar.

<body>

</body>

Creates a container for the document's content (text, images etc).

This is where all the "viewable" content will be inserted.

 12

page, with only the text “ Welcome to my first home page” on it.

Example

<html>

<head>

<title>Welcome!</title>

</head>

<body>

 Welcome to my first homepage!

</body>

</html>

Open up your text editor, type the above, and execute with the help of your

browser. You'll see a blank page with the title "Welcome!" on the title bar, and

the simple line of text "Welcome to my first homepage" sitting in the main

browser area.

Output :

Take another look at the definition of the <body> tag- most of the action in html

will take place inside it, since the <body> tag contains all of the document's

viewable content.

 13

Comment

 Comment is a special text which is not visible in the output. It is used for

the programmer’s reference.

Comments in HTML are enclosed in <!-- -->

Comments can be embedded anywhere in an HTML document except

preformatted text.

Example:

<!-- html3.htm file -->

2.3. Formatting TAGS

 HTML formatting tags can be divided into two loose classes – those that

provide structure to the text of a page and those that change the style of the

text. The structure class contains heading, paragraphs and lists. The style class

contains designing font style.

Headers

A header is an extra large, bold text used as, well, headers in a

document. HTML support six levels of headings, designated by the tags <H1>,

<H2>, <H3>, <H4>, <H5> and <H6>. Heading should be used in their natural

hierarchical order, as in an outline. H1 is the highest level of heading, and it is

customary to place a level 1 heading as the first element in the body of the

document.

Example.

<HEAD>

<TITLE> Example : Header </TITLE>

</HEAD>

<BODY>

<H1> Address </H1>

<H2> School of Computer Science and Engineering <H2>

<H3> Bharathiar University <H3>

<H4> Coimbatore <H4>

</BODY>

 14

Output :

Paragraphs

A paragraph can be created in HTML by using the <p> tag. The <p> tag

creates a block of text that is separated by a blank line both above and below

the block. A blank line is placed after the paragraph. HTML is self formatting.

We need a
 to force the display to another line (or we can use the <PRE> to

ask the browser not to format the text). The paragraph tag is empty – that is

there is no corresponding end tag.

Example: Try removing the <PRE> and </PRE> tags and viewing the following

file again. Experiment by changing the browser window size.

<HTML>

 <HEAD>

<!--This example shows the use of Paragraph Tags.-->

 <TITLE>Examples of Preformatting Tag</TITLE>

 </HEAD>

 <BODY> <PRE>

 15

 I enjoy developing Web Applications Using ASP.

 ASP has several COM based prebuilt objects that

 can be used in a scripting language such as VBscript,

 or Javascript, or Perlscript etc..

 </PRE>

 <P> ASP is easy to learn and you can create very useful Web

 applications relatively quickly, with it

 </BODY>

</HTML>

<PRE> Preformatting is useful in displaying tabular data

You can go on to manipulate the alignment of any paragraph by using

the align attribute. This attribute accepts three values-left, center, or right. Lets

align a paragraph to the right edge of the page:

<p align="right">This is the rightly aligned paragraph. </p>

Bold and italic text

Bold and italic text can be created by using the and <i> tag,

respectively:

This text is bold

<i>This text is italic</i>

Centering text

A <center> tag exists that can be used to wrap around virtually around

formatting tag to center it. Here are a couple of examples:

 16

<center>This bold text is centered</center>

<center><h3>This header is centered as well!</h3></center>

Example:

<HTML>

 <HEAD>

<!--This example shows how the PRE tag can be used to enter tabular

data. -->

 <TITLE>Pre-formatted text example</TITLE>

 <H1><CENTER>Regional Sales in Each Quarter</CENTER></H1>

 <HR>

 </HEAD>

 <BODY>

 <H2>1996 Sales by Region<H2>

 <H3>(in thousands $)</H3>

<PRE>

 North East South West

Q1 100 150 0 200

Q2 150 100 100 300

Q3 200 0 300 100

Q4 0 200 200 100

 --- --- --- ---

 450 450 500 700

 === === === ===

</PRE>

 </BODY>

</HTML>

 17

Formatting your text

Learning how to format text ranks as one of the most important things to learn

in HTML.

Setting Background, Foreground colors

Background/Foreground Colors are specified in the BODY Tag. Similarly

a Background Image is specified in the BODY Tag.

Changing font color, size, and type

Like any decent word processor, you can also alter the font color, size,

and type of the text. The three tags that accomplish this are as follows:

This text is red

This text is very big!

This text is in courier

The valid values for the font color are the hex values of colors - the same

values used for background colors. For font size, an integer between 1 and 7

should be used, with 7 representing the largest font. For the font face, use the

name of the font type as the value, such as Courier, Arial, etc.

You can easily show different formatting tags into one big code to create

the effect desired. For example, if you want text that is bold, 2 in font size,

italic, and Arial in font type, do the below:

<i>Complex Text</front></i>

 18

As you can see, HTML is very flexible, and allows you to throw together

various tags to create the desired effect when one by itself cannot do the job.

Text Formatting Tags

<BIG> This text will appear one size larger than the surrounding text </BIG>

<SMALL> > This text will appear one size larger than the surrounding text

</SMALL>

_{To provide subscripts}

^{To provide superscripts}

<STRIKE> strike through text </STRIKE>

 some text in a different font

<OL TYPE=a>

 First Item a. First Item

 Second Item b. Second Item

 Third Item c. Third Item

<OL TYPE=I>

 First Item I. First Item

 Second Item II. Second Item

 Third Item III. Third Item

<OL TYPE=i>

 First Item i. First Item

 Second Item ii. Second Item

 Third Item iii. Third Item

<OL Start=14>

 First Item 14. First Item

 Second Item 15. Second Item

 Third Item 16. Third Item

 19

Example:

<!-- misctags.htm -->

<HTML>

 <HEAD>

<!--This example shows use of a few useful text formatting tags. -->

 <TITLE> Miscellaneous Tags</TITLE>

 </HEAD>

 <BODY>

 BIG and SMALL Tags

 This text is normal default size.

 <BIG> This text will appear one size larger than the

 surrounding text </BIG>

 <SMALL> This text will appear one size larger than the

 surrounding text </SMALL>

 Normal size text again.

 <HR>

 Subscripts and Superscripts

 <I>f_x</I> = <I>x²+2 </I>

 <HR>

 some text in a different FONT

 <HR>

 List Items with alphabetic, Roman bullets.

 <OL TYPE=a>

 First Item

 20

 Second Item

 Third Item

 <OL TYPE=I>

 First Item

 Second Item

 Third Item

 <OL TYPE=i>

 First Item

 Second Item

 Third Item

 <OL start=15>

 First Item

 Second Item

 Third Item

 </BODY>

</HTML>

 21

Indenting Text:

 Since HTML is autoformatting, indenting requires either using a

preformatting specification by the use of <PRE> tag, or using a

<BLOCKQUOTE> tag.

Example :

<BLOCKQUOTE>

Learning ASP requires some programming background, knowledge of

HTML and a knowledge of scripting language such as VB script. ASP

Pages can be developed using simple text editor such as Notepad.

However, as your skill level increases, a more efficient development

environment such as Visual Interdev is highly recommended.

</BLOCKQUOTE>

 22

The above text inside the BLOCKQUOTEs will be indented 40 pixels to the right.

It is also possible to use the tag to indent the text without specifying any

list item.

Example:

<!-- misctags2.htm -->

<HTML>

 <HEAD>

<!--This example shows use of a few useful text formatting tags. -->

 <TITLE> Miscellaneous Tags</TITLE>

 </HEAD>

 <BODY>

 <DIV ALIGN="center">

 <H2> Aligning Text with the DIV and ALIGN Tags </H2>

 <P> Learning ASP requires some programming background,

knowledge

 of HTML and a knowledge of scripting language such as VB script.

 </P>

 <P> ASP Pages can be developed using simple text editor such as

Notepad.

 However, as your skill level increases, a more efficient development

 environment such as Visual Interdev is highly recommended. </P>

 </DIV>

 <HR>

 <H2> Indenting By the use of BLOCKQUOTE tag </H2>

 <BLOCKQUOTE>

 Learning ASP requires some programming background, knowledge of

HTML

 and a knowledge of scripting language such as VB script. ASP Pages

can

 23

 be developed using simple text editor such as Notepad. However, as

your

 skill level increases, a more efficient development environment such as

 Visual Interdev is highly recommended.

 </BLOCKQUOTE>

 <HR>

 <H2> Indenting By use of UL Tag </H2>

 Learning ASP requires some programming background, knowledge of

HTML

 and a knowledge of scripting language such as VB script. ASP Pages

can

 be developed using simple text editor such as Notepad. However, as

your

 skill level increases, a more efficient development environment such as

 Visual Interdev is highly recommended.

 </BODY>

</HTML>

 24

Adding a background to your document

The first thing most beginner webmasters want to do with their web page

is to add a background to it, whether it be a background color or image. By

default, a document with no background gray (or white in newer browsers) in

the background. That's easy to appears fix. Lets begin by adding a background

color. To add a splash of color to your document, add the following code inside

the <body> tag itself:

<body bgcolor="#XXXXXX">

where xxxxxx is the hex code for the color you want. Here's a small chart of the

hex code for some common colors:

 25

For example, the below gives our document a background of black:

<body bgcolor="#000000">

Example: Background Color.

<!-- html11.htm>

<HTML>

 <HEAD>

<!--This example shows the use of Background Colors.-->

 <TITLE>Examples of Background Color</TITLE>

 <H1>Welcome to my Web page.</H1>

 <HR>

 </HEAD>

 <BODY BGCOLOR="#00FF00" TEXT=#FF0000">

 <P> I enjoy developing Web Applications Using ASP.

 ASP has several COM based prebuilt objects that

 can be used in a scripting language such as VBscript,

 or Javascript, or Perlscript etc..

 </P>

 <P> ASP is easy to learn and you can create very useful Web

Black #000000

White #FFFFFF

Blue #0000FF

Yellow #FFFF00

Red #FF0000

Green #008000

Lime #00FF00

Silver #C0C0C0

 26

 applications relatively quickly, with it

 </P>

 To learn more about ASP, I will recommend taking a course on it

 </BODY>

</HTML>

Example: background Image.

<!-- html12.htm>

<HTML>

 <HEAD>

<!--This example shows the use of Background Image.-->

 <TITLE>Examples of Background Image</TITLE>

 <H1>Welcome to my Web page.</H1>

 <HR>

 </HEAD>

 <BODY BACKGROUND="c:/htmlex/backgrnd.gif">

 <P> I enjoy developing Web Applications Using ASP.

 ASP has several COM based prebuilt objects that

 can be used in a scripting language such as VBscript,

 27

 or Javascript, or Perlscript etc..

 </P>

 <P> ASP is easy to learn and you can create very useful Web

 applications relatively quickly, with it

 </P>

 To learn more about ASP, I will recommend taking a course on it

 </BODY>

</HTML>

You can also choose Link colors in the BODY Tag.

VLINK=”#rrggbb” => Visited Link Color (default is purple)

ALINK=”rrggbb” => Active Link Color (default is red)

LINK=”#rrggbb” => Link (default is Blue)

Example:

<!-- html13.htm -->

<HTML>

 <HEAD>

 <TITLE>Color of Active and Visited Links</TITLE>

 28

 <H1>This page contains some popular Web links.</H1>

 <HR>

 </HEAD>

 <BODY TEXT="green" VLINK="red"

 LINK="yellow" ALINK="#00FFA0">

 Amazon Shopping

 Visual

Basic

 Yahoo

 </BODY>

</HTML>

Now that you know how to give your doc a background color, lets move

on to learn how to give it an image as well. For illustration, lets first bring in a

nice image we'll be using:

 29

To utilize the above image as the background, use the following syntax:

<body background="backgr15.jpg">

Many authors like to give their document BOTH a background color,

and an image as well. This way, while the image has yet to come through from

the server, surfers will see a background color in the meantime:

<body bgcolor="#000000" background="backgr15.jpg">

Background Sounds

Use the BGSOUNG Tag to embed a sound file. Use LOOP=”infinite” to

repeatedly play the sound file.

Example:

<!-- html14.htm>

<HTML>

 <HEAD>

<!--This example shows the use of Background Sound.-->

 <TITLE>Example of Background Sound</TITLE>

 <H1>Welcome to My Musical Page.</H1>

 <HR>

 </HEAD>

 <BODY BGCOLOR="aqua"> <BGSOUND

SRC="d:/htmlex/welcom98.wav" LOOP="infinite">

 <PRE>

 I enjoy developing Web Applications Using ASP.

 ASP has several COM based prebuilt objects that

 can be used in a scripting language such as VBscript,

 or Javascript, or Perlscript etc..

 ASP is easy to learn and you can create very useful Web

 applications relatively quickly, with it

 To learn more about ASP, I will recommend taking a course on it

 </PRE>

backgr15.jpg

 30

 The course would be more fun if there was music in

the pages

 </BODY>

</HTML>

2.4. Special Characters

 There are two kinds of HTML elements; character entities and markup

tags. A characters entity begins with an ampersand (&), followed either by

name of a predefined entity or a pound sign, followed by the decimalnnumber of

the character, and finally, by a semicolon to terminate by the decimal number

of the character, and, finally, by a semicolon to terminate the character entity.

For example the tilde(~) can be generated by the sequence ~.

 Many character entities are predefined for the purpose of placing special

characters into the text. Some of them are :

 < Right angle bracket or less-than sign

 > Left angle bracket or greater-than sign

 & Ampersand

 " Double quote mark

 Nonbraking space

 31

2.5. Horizontal Rules and Line Break

The line break tag
 is similar to the paragraph tag. It forces the text

directly following the tag onto the next line at the left margin without the

addition of any white space.

 Another way of separating blocks of text is with a line drawn across the

width of the page. This is called a horizontal rule, and the tag fot it is <HR>. The

browser will adjust the length of the line to fit the width of the displayed page.

Eg.

<HEAD>

<TITLE> Line Break & Horizontal Rule </TITLE>

</HEAD>

<BODY>

<H1> Address </H1>

<HR>

School of Computer Science and Engineering

Bharathiar University

Coimbatore

<HR>

</BODY>

 32

2.6. Inserting Images

Enough with boring text, lets move on to something more colorful- images!

Images are inserted into a document by using the tag. The below inserts

an image called "paperboy.gif":

Two things to notice here. First, all tags have a src attribute, which is

required to specify the file path of the image you're inserting (in this case, its

paperboy.gif). Second, tags no not have closing tags (ie </img). It's one of

those rare cases where a closing tag is not required.

The width and height attribute of

There's a secret to making your images load faster in a document- use the

width and height attribute of the tag. These attributes allows us to

explicitly specify the dimensions of the image, thus saving the browser from

 33

ownload time. The above paper boy is 98*100 in dimensions. Lets tell our

browser that when defining it, shall we?

The width/height attribute can actually do more than just speed up an image's

download. We can use it to also alter the dimensions of the image. Lets blow up

the paperboy by giving it a large width and height:

Ugly paper boy, from this viewpoint!

2.7. Let us Sum up

Hypertext Markup language (HTML) is a system for marking up

documents with informational tags that indicates how text in the documents

should be presented and how the documents are linked.

Hypertext is text that is not constrained to be linear. Hypertext organizes

information as an interconnected web of linked text. Hypermedia applications

encompass graphics, video, sound and more.

HTML stands for Hypertext Markup Language. HTML is not compiled but

interpreted line by line by the Web Browser. HTML uses tags which direct the

Web Browser to display the contents enclosed in the tag in the directed way.

A starting tag begins with the left angle bracket (<) followed immediately

by the tag ID, any attributes, then the right angle bracket (>) to close the tag.

Ending tags are exactly the same except that there is a (/) slash immediately

between the opening bracket and the tag ID and ending tags cannot contain

 34

any attributes. If the tag is an empty tag, then there is no enclosed text and the

ending tag is omitted.

Editing HTML

 Editing HTML code we need a text editor. We can use any text editor for

example notepad in Windows. We should save the code as .html extension. In

windows, it is .htm extension. To run the code or view the output, we have to

just click the programe. If any of the browser already loaded in your system it

will automatically execute the programe or you can run with the help of open in

the browser open menu or you just type the file name with path in the URL

window of the browser.

Common Tags

Comment

 Comment is a special text which is not visible in the output. It is used for

the programmer’s reference.

Comments in HTML are enclosed in <!-- -->

Formatting TAGS

 Headers

A header is an extra large, bold text used as, well, headers in a

document. HTML support six levels of headings, designated by the tags <H1>,

<H2>, <H3>, <H4>, <H5> and <H6>.

<html>

</html>

Specifies that this is an HTML document. All html documents

begin and end with this tag.

<head>

</head>

Creates a container for meta information, such as the

document's title, keywords and description info for search engine

crawling, etc to be added to the document.

<title>

</title>

Creates a "title" for the document. Anything you add inside this

tag, the browser displays it in the title bar.

<body>

</body>

Creates a container for the document's content (text, images etc).

This is where all the "viewable" content will be inserted.

 35

Bold and italic text

Bold and italic text can be created by using the and <i> tag,

respectively:

Centering text

A <center> tag exists that can be used to wrap around virtually around

formatting tag to center it.

Formatting your text

Changing font color, size, and type

You can also alter the font color, size, and type of the text. The three tags

that accomplish this are as follows:

This text is red

This text is very big!

This text is in courier

Text Formatting Tags

<BIG> This text will appear one size larger than the surrounding text </BIG>

<SMALL> > This text will appear one size larger than the surrounding text

</SMALL>

_{To provide subscripts}

^{To provide superscripts}

<STRIKE> strike through text </STRIKE>

 some text in a different font

<OL TYPE=a>

 First Item a. First Item

 Second Item b. Second Item

 Third Item c. Third Item

<body bgcolor="#XXXXXX">

 36

where xxxxxx is the hex code for the color you want. Here's a small chart of the

hex code for some common colors:

Now that you know how to give your doc a background color, lets move

on to learn how to give it an image as well. For illustration, lets first bring in a

nice image we'll be using:

To utilize the above image as the background, use the following syntax:

<body background="backgr15.jpg">

<body bgcolor="#000000" background="backgr15.jpg">

Special Characters

 There are two kinds of HTML elements; character entities and markup

tags. A characters entity begins with an ampersand (&), followed either by

name of a predefined entity or a pound sign, followed by the decimalnnumber of

the character, and finally, by a semicolon to terminate by the decimal number

of the character, and, finally, by a semicolon to terminate the character entity.

For example the tilde(~) can be generated by the sequence ~.

 Many character entities are predefined for the purpose of placing special

characters into the text. Some of them are :

Black #000000

White #FFFFFF

Blue #0000FF

Yellow #FFFF00

Red #FF0000

Green #008000

Lime #00FF00

Silver #C0C0C0

backgr15.jpg

 37

 < Right angle bracket or less-than sign

 > Left angle bracket or greater-than sign

 & Ampersand

 " Double quote mark

 Nonbraking space

Horizontal Rules and Line Break

The line break tag
 is similar to the paragraph tag. Another way of

separating blocks of text is with a line drawn across the width of the page. This

is called a horizontal rule, and the tag for it is <HR>.

2.8. Lesson End Activities

1. What is Markup language?

2. Who develop the HTML?

3. Write the tag for

a. Header

b. Italic

c. Background color

d. Line Break

2.9. Check Your progress

 1. Write in detail about HTML.

 2. Using HTML design a page for a Marriage Invitation.

2.10. Reference

 1. WWW.W3C

2. Thomas A. Powell, “The Complete Reference HTML and XHTML”,

fourth Edition, Tata McGraw Hill.

 38

 39

Lesson 3

Intermediate HTML

Contents

3.0. Aim and Objective

3.1. Introduction

3.2. List

3.3. Tables

3.4. Forms

3.5. Hyperlinks

3.6. Frames

3.7. <META> tag

3.8. Let us Sum Up

3.9. Lesson End Activities

3.10. Check Your Progress

3.11. Reference

3.0. Aim and Objective

• To learn advanced HTML

• To write a program using list, table and forms

3.1. Introduction

 Your personal home page is the starting point for all your hypertext

works. Since it will be created from scratch, use top-down approach. If you are

developing your home page, it needs some list of order like bullet, some table

format and multiple screen design. This lesson wills tech you these concepts.

3.2. Lists

A list is defined as a sequence of paragraphs, each marked with the list

item tag . The entire sequence of list items is enclosed with the starting and

 40

ending tags appropriate to the kind of list. HTML list tags come in three

flavors:

Ordered (numbered) lists: Typically indented with extra line spacing

between numbered paragraphs.

 First list item

 Second item

 Third list item

Unordered (bullet) lists: Like an ordered list but with bullets instead of

numbers.

 One list item

 Another list item

 Still another list item

Definition lists: A list of very short elements, such as file names,

possibly rendered in multiple columns.

<DL>

 <DT>Term to be defined</DT>

 <DD>Definition of term to be defined...</DD>

 <DT>Another term to be defined</DT>

 <DD>Definition of another term to be defined...</DD>

</DL>

It is not necessary to have paired <DT> and <DD> tags. Sometimes

definition lists are used just to create different levels of indentation.

Example : 3.1

<HTML>

 <HEAD>

 <TITLE>Link and List Tags</TITLE>

 41

 </HEAD>

 <BODY> <H1> This Page contains some popular university web site

links </H1>

 <HR>

Anna University

Bharathiar Univesity

<AHREF="http://www.madrasuniv.ac.in">Madras University

 </BODY>

</HTML>

Example : 3.2

<HTML>

 <HEAD>

 <TITLE>E-mail Links </TITLE>

 </HEAD>

 42

 <BODY> <H1>This page contains some useful E-mail links.</H1>

 <HR>

 Vice Chancellor

 Registrar

 <PRE>

 To provide comments about the quality of this page, please

 send email to Web

Master at Bharathiar University

 </PRE>

 </BODY>

</HTML>

3.3. Tables

 Tables are specified using <TABLE> </TABLE> tags. Caption for table are

specified with the <CAPTION> </CAPTION>. Table caption appear above the

table. Tables have header and data cells defined by the empty tags., <TH> and

 43

<TD>. Cells may contain text, paragraphs, lists and headers. Each row of a

table is ended by table row tag <TR>.

Table Related Tag Description

<CAPTION>.. ..<CAPTION> Indicates caption of the table

<TR> .. </TR> New Row for the table

<TH> .. </TH> Table Heading

(puts data in bold)

<TD> .. </TD> Table Data

Example: 3.3

<HTML>

 <HEAD>

 <TITLE>Web Table Example</TITLE>

 <H2>Example of Using Table Tags</H2>

 <HR>

 </HEAD>

 <BODY>

 <TABLE BORDER=4>

 <CAPTION>2007 Sales by Region (Thousands)</CAPTION>

<TR><TH> Quarter <TH> North <TH> East <TH> South <TH> West </TR>

<TR><TH> Q1 <TD> 100 <TD> 150 <TD> 0 <TD> 200 </TR>

<TR><TH> Q2 <TD> 150 <TD> 100 <TD> 100 <TD> 300 </TR>

<TR><TH> Q3 <TD> 200 <TD> 0 <TD> 200 <TD> 100 </TR>

<TR><TH> Q4 <TD> 0 <TD> 200 <TD> 200 <TD> 100 </TR>

<TR><TH> Total<TH> 450 <TH> 450 <TH> 500 <TH> 700 </TR>

 </BODY>

</HTML>

 44

Use <TH COLSPAN=number> or <TH ROWSPAN=number> to span multiple

columns or rows for a table heading.

Web Tables can also contain Images

Example: 3.5

<HTML>

 <HEAD>

 <TITLE>Web Table Example</TITLE>

 <H2>Web Table Example - Images inside a Table</H2>

 <H3>Text and images can span more than one column or row with the

 use of COLSPAN/ROWSPAN elements.</H3>

 <CENTER>

 <H4>Text and tables can also be centered using the CENTER

tag!</H4>

 </CENTER>

 <HR>

 </HEAD>

 <BODY>

 <CENTER>

 45

<TABLE BORDER>

<TH COLSPAN=7> 1996 Sales by Region (000's)</TH>

<TR><TH ROWSPAN=6></TH>

<TH><TH> Quarter <TH> North <TH> East <TH> South <TH> West

<TR><TH><TH> Q1 <TD> 100 <TD> 150 <TD> 0 <TD> 200 </TR>

<TR><TH><TH> Q2 <TD> 150 <TD> 100 <TD> 100 <TD> 300 </TR>

<TR><TH><TH> Q3 <TD> 200 <TD> 0 <TD> 200 <TD> 100 </TR>

<TR><TH><TH> Q4 <TD> 0 <TD> 200 <TD> 200 <TD> 100 </TR>

<TR><TH><TH> Total <TH> 450 <TH> 450 <TH> 500 <TH> 700 </TR>

 </CENTER>

 </BODY>

</HTML>

3.4. Forms

 A form is a designated area of an HTML page made available for user

input. There can be many forms on a page; however, forms cannot be nested.

Each form is defined by starting and ending tags with attributes for specifying

how the form’s input should be processed.

 46

 The basic idea of a form is to present input field to the reader for typing

in text information, and radio buttons, check boxes, and pop-up menus for

selecting items from option lists. Somewhere on the form is a set of action

buttons, typically a Reset button and a Submit button.

 The Reset Button, when clicked, clears the reader’s input form the text

fields in the form and sets all input objects back to their default values. The

submit button buttons, when clicked, instructs the browser to take the action

specified in the form’s Action attribute according to the method specified in the

METHOD attribute. There are two action methods, METHOD=GET and

METHOD=POST.

 If the GET method is specified in the form tag, the browser constructs a

query URL consisting of the URL of the current page containing the form,

followed by a question mark, followed by the values of the form’s input fields

and objects. The browser sends this to a executable script or program on a

server identified by the URL in the ACTION attribute. The script or program

can use this information to do any number of things, such as searching and

updating databases. The process ends with the server returning a new page to

the reader, possibly one dynamically created by the server script. If the POST

method is specified, the form’s contents are sent to the server script as a data

block to standard input.

Layout of Form Elements can be improved by embedding the controls inside a

Table.

Example: 3.6

<HTML>

 <HEAD>

 <TITLE> Controlling Form Layout with a Table </TITLE>

 <H2> Form Elements can be aligned better through a Table </H2>

 <HR>

 </HEAD>

 <BODY>

 <FORM METHOD=GET ACTION="">

 47

 <TABLE WIDTH=1 BORDER=0>

 <TR>

 <TD> <!-- space escape code -->

 <TD>Name:

 <TD><INPUT Length=10 NAME=txtName>

 <TR>

 <TD>

 <TD>Telephone:

 <TD><INPUT NAME=txtPhone>

 <TR>

 <TD>

 <TD>

 <TD><INPUT TYPE=submit value=SUBMIT>

 <INPUT TYPE=reset value=RESET>

 </TD>

 </TR>

 </TABLE>

 </FORM>

 </BODY>

</HTML>

 48

3.5. Hyperlinks

Hyperlinks represent the essence of the WWW, linking millions and

millions of pages from around the world together. Hyperlinks allow a page to be

linked to other Pages. You can also provide email links. Graphic images can

also be used to point to a Hyperlink.

Anchors and Links Within a Document

HTML differs from traditional formatting langua ges in the ability to

include hyperlinks in documents. This is done with <A> anchor tags. Two basic

types of anchor tags are needed to define hyperlinks for jumping to different

locations within a document:

Target

Defines "Target" as a location in the current document that you can refer

to as "#anchorname" in a link.

Reference

Defines "Reference" as a location you can click on to jump to the target

location "#anchorname". The TITLE attribute should be used if

"Reference" is an image. Some browsers use TITLE descriptions to help

make web pages accessible to people with vision impairments.

You can easily create links that link to a local document within your site.

Just supply the complete path of the target document, with the current

document the starting point. Here's are some examples:

Click here for the next section Click here for the

next section

Click here for the next Lesson Click here

for the next Lesson

The first link assumes that section3.htm is in the same directory as the

current page, whereas the second assumes Lesson3.htm is stored in the

directory "subdir", a sub directory of the current directory.

The ability to make links to documents that reside on computers all over

the world makes the web the boundless resource it is today. Links to other

 49

documents are handled by using a more general form of the HREF attribute in

the <A> tag.

The most general form is a URL (Uniform Resource Locator). For

example, the URL for the "Links to Other Documents" section of the document

you are reading is:

http://www.du.edu/uts/classes/index.html#otherdocs

This is an absolute reference. Only one location in one document in the

entire world matches it. It's also possible (and often desirable) to use relative

references instead of absolute references. For example, as you have already

seen, an HREF in the same document can specify this target location as:

#otherdocs

an HREF in a different document in the same directory can specify this

target location as:

index.html#otherdocs

an HREF in any document on the www.du.edu server can specify this

target location as:

/uts/classes/index.html#otherdocs

Adding Image links

Once you understand how to create links in general, creating image links

are a snap. Just substitute the text with the tag. For example

<a href="http://www.B-U.ac.in"

Notice the blue line surrounding the image- this is how an image link

appears by default. We can easily get rid of the border by setting the border

attribute to 0:

 50

<a href="http://www.B-U.ac.in"

Web pages can use GIF or JPEG images (compression schemes for

images). Use forward slashes to provide path to the image file <IMG

SRC=”c:/webgifs/mygif1.gif”> even on Windows OS. GIF has maximum of 256

colors (8 bit color). Use GIF for line art e.g., stock charts. JPEG has 24 bit color

(16.7 million colors). Use it for human faces, photographic pictures. Use <ALT>

Tag to provide a text description so that browsers that do not have visual

features can still use your information.

Example:

<HTML>

 <HEAD>

 <TITLE>Page Links Via Images</TITLE>

 </HEAD>

 <BODY> <H1>This page contains some useful Web links.</H1>

 <H3>Instead of text hyperlinks, graphic images are used.</H3>

 <HR>

 <P>

</P>

 <P>

 <IMG SRC="winlogo.gif"

ALT="Link to Microsoft">

 </P>

 </BODY>

</HTML>

 51

Internal Linking (Linking within the same Document)

We can use the anchor <A> tag to link to another document, or send

email.

 link to Yahoo site

 For more information, click here

It is also possible to link to different spots within a single large document

by using the <A> tag. In this case, it is required that we identify the fragment to

link to by giving it a NAME through the <A> tag.

Example:

<!-- misctags3.htm -->

<HTML>

 <HEAD>

<!--This example shows use of linking within the same document. -->

 <TITLE> Linking within the same Document</TITLE>

 </HEAD>

 <BODY>

 <H2> Linking within the same Document </H2>

 Course description for CS305

 Course description for CS455

 52

 CS 305

 Introduction to Algorithms.

 This course covers the design and analysis of sequential and

 parallel algorithms.

 CS 455

 Introduction to Computer Architecture.

 This course covers the design of a complete 32 bit super pipelined

 RISC processor.

 </BODY>

</HTML>

3.6. Frames

Frames Break a Web Page Into Sections. One Section in a Frame can be

used as Table of Contents.

 53

Frame-Based Pages consist of two main parts

1. Master Page – decides how frames will be displayed

2. Source Pages

Tag Description

<FRAMESET> How Master Page is divided into its frame components

<FRAME> Defines source document for the frame

<NOFRAMES> Specifies content for browsers that do not use frames

<BASE TARGET> Specifies a frame that will change based on the selected

URL (e.g., URL in table of contents)

Example:

<!-- master.htm -->

<HTML>

<HEAD>

<TITLE>Master Frame Page</TITLE>

</HEAD>

<FRAMESET ROWS="20%,80%">

 <FRAME SRC="banner.htm" NAME="banner" MARGINWIDTH="1"

 MARGINHEIGHT="1">

 <FRAMESET COLS="30%,70%">

 <FRAME SRC="sitemap.htm" NAME="sitemap" MARGINWIDTH="1"

 MARGINHEIGHT="1">

 <FRAME SRC="main.htm" NAME="main" MARGINWIDTH="1"

 MARGINHEIGHT="1">

 </FRAMESET>

 <NOFRAMES>

 <HEAD>

 <TITLE>No frames version of the master page</TITLE>

 <H2>This is the No Frames Version of the Master Page</H2>

 54

 <HR>

 </HEAD>

 <BODY>

 <H3>Table of Contents</H3>

 <P>Company History</P>

 <P>Product Line</P>

 <P>Company Contact Information</P>

 </BODY>

 </NOFRAMES>

</FRAMESET>

</HTML>

<!-- sitemap.htm -->

<HTML>

<HEAD>

<TITLE>Table of Contents Page</TITLE>

<BASE TARGET = "main">

</HEAD>

<H2>Table of Contents Frame</H2>

Clicking hyperlinks in this frame will cause the contents of the main

frame to change.

<P>Company History</P>

<P>Product Line</P>

<P>Company Contact Information</P>

</BODY>

</HTML>

<!--main.htm -->

<HTML>

<HEAD>

<TITLE>Initial Page for Main Frame</TITLE>

 55

</HEAD>

<H2>Main Frame</H2>

This is the initial page for the main frame. When hyperlinks are clicked

in the table of

contents, the contents of this frame will change.

</HTML>

<!-- company.htm -->

<HTML>

<HEAD>

<TITLE>Company History Page</TITLE>

</HEAD>

<H2>Company History</H2>

</BODY>

</HTML>

<!-- product.htm -->

<HTML>

<HEAD>

<TITLE>Product Line Page</title>

</HEAD>

<H2>Product Line</H2>

</BODY>

</HTML>

<!-- contact.htm -->

<HTML>

<HEAD>

<TITLE>Company Contacts Page</TITLE>

</head>

<H2>Company Contacts</H2>

</BODY>

</HTML>

 56

 57

Image Maps

Image Maps consist of a graphic divided into separate regions. Hot spots

can be created in an image map and tied to hyperlinks.

<MAP> specifies hot spots in the image map

<AREA> COORDS attribute of AREA tag identify the X and Y coordinates

of each hot spot.

Example:

<!-- imagemap.htm -->

<HTML>

<HEAD>

<H2>A hot spot exists for each of the three book catagories listed.</H2>

By moving the mouse over each hot spot, the URL assocated with

each hot spot is displayed in the lower left hand portion of the Web

browser.

<HR>

</HEAD>

<BODY>

<P>

<MAP NAME="prima">

<AREA SHAPE="rect" coords="76,5,216,64" href="lifestyles.htm">

<AREA SHAPE="rect" coords="222,7,510,66" href="games_ent.htm">

<AREA SHAPE="rect" coords="516,8,703,65" href="computer.htm">

</MAP>

</BODY>

</HTML>

 58

<!-- lifestyles.htm -->

<HTML>

 <HEAD>

 <TITLE> Lifestyles Page </TITLE>

 </HEAD>

 <BODY>

 <H1> Page for Lifestyles link </H1>

 </BODY>

</HTML>

<!-- games_ent.htm -->

<HTML>

<HEAD>

 <TITLE> Games and Entertainment Page </TITLE>

</HEAD>

<BODY>

 <H3> Page for Games and Entertainment </H3>

</BODY>

</HTML>

 59

<!-- computer.htm -->

<HTML>

 <HEAD>

 <TITLE> Computer Books Page </TITLE>

 </HEAD>

 <BODY>

 <H3> Page for Computer Books Listings </H3>

 </BODY>

</HTML>

ISMAP corresponds to Server Side Image Maps and USEMAP

corresponds to Client side image maps. The AREA attribute in the <MAP> tag

can have a SHAPE of either a RECT, POLYGON, CIRCLE, or DEFAULT. RECT

region is identified by top left corner of a rectangle and bottom right. The

CIRCLE takes three parameters; the center point and the radius. The POLYGON

takes coordinates of a collection of lines. DEFAULT is the area specified by no

AREA region. An area can also be specified to link to NOHREF.

Example:

<!-- imagemap2.htm -->

<HTML>

 <HEAD>

 <TITLE> Image Maps </TITLE>

 </HEAD>

 <BODY>

 <H2> Image Maps - A hot spot exists for different portions on the

Image</H2>

 By moving the mouse over each hot spot, the URL assocated with each

hot spot is

 displayed in the lower left hand portion of the Web browser.

 <P><Align=center>

 60

 <IMG SRC="yahoocard.gif" USEMAP=#MyMap

BORDER=0 WIDTH=200 HEIGHT=200>

 </P>

 <MAP NAME=MyMap>

 <AREA SHAPE="rect" coords="0,0,200,75"

href="http://www.yahoo.com">

 <AREA SHAPE="circle" coords="100,100,25"

href="http://www.amazon.com">

 <AREA SHAPE="polygon" coords="0,200,50,100,100,200"

href="http://www.microsoft.com">

 <AREA SHAPE="rect" coords="150,150,200,200" NOHREF>

 <AREA SHAPE="default" href="default.htm">

 </MAP>

 </BODY>

</HTML>

 61

3.7. <META> Tag

Provides information about the HTML document such as creation date,

author, copyright etc.. It also provides keywords about the document that can

be used by Search Engines. META tag can also be used to specify Client Pull

Functions . A document can have any number of META tags . META tags are

placed in the HEAD section of an HTML document. There are two types of

META tags, using either the NAME or HTTP-EQUIV attribute

 <META HTTP-EQUIV= - - - CONTENT= - - ->

 <META NAME= - - - CONTENT= - - ->

 The CONTENT attribute provides the values for the HTTP-EQUIV or the

NAME field.

• Information provided by the HTTP-EQUIV attribute is added to the http

Response header

Client-Pull Examples:

<META HTTP-EQUIV=refresh CONTENT=20>

This will cause the browser to request the page from the server every 20

seconds. If the server is updating the page periodically, you will see the changes

automatically occurring in your browser.

Example:

<!-- ClientPull.htm -->

<HTML>

 <HEAD>

 <META http-equiv=refresh content=20>

 <TITLE> Client Pull via META tag </TITLE>

 </HEAD>

 <BODY>

 Example of Client Pull via META tag.

<!-- after viewing the page, change the following line to

 SRC="d:\htmlex\yahoocard.gif .. and save it immediately -->

 </BODY>

</HTML>

 62

You can create a slide Show Effect by adding a META refresh type tag

and pointing to the next HTML document as demonstrated by the following

example:

Example:

<!-- Slide1.htm -->

<HTML>

 <HEAD>

 <META http-equiv=refresh content="5; URL=slide2.htm">

 <TITLE> Client Pull via META tag </TITLE>

 </HEAD>

 <BODY>

 SLIDE SHOW: SLIDE 1

 </BODY>

</HTML>

<!-- Slide2.htm -->

<HTML>

 <HEAD>

 <META http-equiv=refresh content="5; URL=slide3.htm">

 <TITLE> Client Pull via META tag </TITLE>

 63

 </HEAD>

 <BODY>

 SLIDE SHOW: SLIDE 2

 </BODY>

</HTML>

<!-- Slide3.htm -->

<HTML>

 <HEAD>

 <META http-equiv=refresh content="5; URL=slide1.htm">

 <TITLE> Client Pull via META tag </TITLE>

 </HEAD>

 <BODY>

 SLIDE SHOW: SLIDE 3

 </BODY>

</HTML>

3.8. Let us Sum Up

A list is defined as a sequence of paragraphs, each marked with the list

item tag . The entire sequence of list items is enclosed with the starting and

ending tags appropriate to the kind of list. HTML list tags come in three

flavors:

Ordered (numbered) lists

Unordered (bullet) lists

Definition lists

 Tables

 Tables are specified using <TABLE> </TABLE> tags. Caption for table are

specified with the <CAPTION> </CAPTION>. Table caption appear above the

table. Tables have header and data cells defined by the empty tags., <TH> and

 64

<TD>. Cells may contain text, paragraphs, lists and headers. Each row of a

table is ended by table row tag <TR>.

Forms

 A form is a designated area of an HTML page made available for user

input. The basic idea of a form is to present input field to the reader for typing

in text information, and radio buttons, check boxes, and pop-up menus for

selecting items from option lists. The submit button buttons, when clicked,

instructs the browser to take the action specified in the form’s Action attribute

according to the method specified in the METHOD attribute. There are two

action methods, METHOD=GET and METHOD=POST.

Hyperlinks represent the essence of the WWW, linking millions and

millions of pages from around the world together. Hyperlinks allow a page to be

linked to other Pages. You can also provide email links. Graphic images can

also be used to point to a Hyperlink.

HTML differs from traditional formatting langua ges in the ability to

include hyperlinks in documents. This is done with <A> anchor tags.

Frames

Frames Break a Web Page Into Sections. One Section in a Frame can be

used as Table of Contents.

Frame-Based Pages consist of two main parts

Master Page – decides how frames will be displayed

Source Pages

Tag Description

<FRAMESET> How Master Page is divided into its frame components

<FRAME> Defines source document for the frame

<NOFRAMES> Specifies content for browsers that do not use frames

<BASE TARGET> Specifies a frame that will change based on the selected

URL (e.g., URL in table of contents)

 65

<META> Tag

Provides information about the HTML document such as creation date,

author, copyright etc.. It also provides keywords about the document that can

be used by Search Engines. META tag can also be used to specify Client Pull

Functions . A document can have any number of META tags . META tags are

placed in the HEAD section of an HTML document. There are two types of

META tags, using either the NAME or HTTP-EQUIV attribute

3.9. Lesson End Activities

 1. What is the purpose of Forms?

 2. Explain the usage of <META> tag.

 3. Describe different kinds of lists.

3.10. Check Your Progress

1. Design your home page for your resume using Table for your

Academic qualification and image for your photo.

2. Write a HTML programe using Forms to view the result of a student.

3. Write a HTML programe using Frames to list the subject in your

syllabus.

3.11 Reference

1. WWW.W3C

3. Thomas A. Powell, “The Complete Reference HTML and XHTML”,

fourth Edition, Tata McGraw Hill.

 66

 67

Lesson 4

JavaScript - Basics

Contents

4.0 Aim and Objective

4.1 Introduction

4.2. Variables

4.3. Escape Sequence

4.4. Expression and Operators

4.5. Special Operators

4.6. Let us Sum Up

4.7. Lesson end Activities

4.8. Check your progress

4.9. Reference

4.0. Objective

• To be able to write simple JavaScript programs

• To understand arithmetic operation in JavaScript

• To understand decision making statements in JavaScript

4.1. Introduction

Java Script is an interpreted programming language that is embedded in

a web browser. It is not a JAVA Programming Language. To write a Java Script

program, Open Window’s Notepad or your favorite text editor, type in a

JavaScript program, and save it as filename.htm. Double-clicking filename.htm

causes your browser to run the program.

Java Scripting can be implemented any one of two types

• Inline scripting, place code INSIDE the HTML code

• Much like an external style sheet in design, file outside of

HTML contains JAVASCRIPT code

 68

Including JavaScript in HTML

Both Inline and External Java Scripting you have to place in the <head>

section and it needs both opening and closing <script> tag.

Inline Java Scripting

<script type = “text/javascript”>

</script>

External Java Scripting

<script type = “text/javascript” src=“javasc1.js”>

</script>

First JavaScript Program

Your first JavaScript Program embedded in HTML “Hello World”. First we

will create the HTML code that will include the JavaScript and create the

JavaScript code.

HTML Code :

<head>

 <title> Hello World </title>

 <script type= “text/javascript” src=”hellowworld.js”>

 </script>

</head>

Javascript Code : (helloworld.js)

 The file contain only the following line

alert("Hello World");

alert is a default JavaScript function. It makes an alert box appear on the

screen

Syntax Rules

All default function described in JavaScript are lower case AND case

sensitive. All command in JavaScript are case sensitive.

Use of Comments in JavaScript

 69

Comment used to understand the code for future reference. It won’t

compile. Java Script provides the comment like C/C++. It is easy to use in

JavaScript than in HTML.

Two types of comments are there

• Single line comment //

• Multiple line comment /* code */

Eg.

Using Single line Comment

// Bharathiar University

// Project 1

// 5/22/08

// Period 1

Multiple line Comment

/*

Bharathiar University

Project 1

5/23/08

Period 1

*/

4.2. Variables

 Java Script use var to declare ANY type of variable. In Java Script

variables are loosely typed. It may or may not have to initialize the variable.

You use variables as symbolic names for values in your application. You

give variables names by which you refer to them and which must conform to

certain rules.

A JavaScript identifier, or name, must start with a letter or underscore

(“_”); subsequent characters can also be digits (0-9). Because JavaScript is case

sensitive, letters include the characters “A” through “Z” (uppercase) and the

characters “a” through “z” (lowercase).

Some examples of legal names are Number_hits, temp99, and _name.

 70

Declaring Variables

You can declare a variable in two ways:

By simply assigning it a value. For example, x = 42

With the keyword var. For example, var x = 42

Evaluating Variables

A variable or array element that has not been assigned a value has the

value undefined. The result of evaluating an unassigned variable depends on

how it was declared:

If the unassigned variable was declared without var, the evaluation

results in a runtime error.

If the unassigned variable was declared with var, the evaluation results

in the undefined value, or NaN in numeric contexts.

// create a variable and assign a string to it

var message = "My First JavaScript Variable";

 // display the value stored in the variable

alert(message);

// initialize a number variable

var a = 0.06;

// initialize a string variable

var b = "JavaScript in easy steps";

// initialize a boolean variable

var c = false;

// display the data types of each variable

alert(typeof a + "\n" + typeof b + "\n" + typeof c);

The output of the above looks like

 71

Variable Scope

When you set a variable identifier by assignment outside of a function, it

is called a global variable, because it is available everywhere in the current

document. When you declare a variable within a function, it is called a local

variable, because it is available only within the function.

Using var to declare a global variable is optional. However, you must use

var to declare a variable inside a function.

You can access global variables declared in one window or frame from

another window or frame by specifying the window or frame name. For example,

if a variable called phoneNumber is declared in a FRAMESET document, you

can refer to this variable from a child frame as parent.phoneNumber.

Global variables

Declared in the JavaScript as usual, but not inside a function.

4.3. Escape Sequences Using Special Characters in Strings -

In addition to ordinary characters, you can also include special

characters in strings, as shown in the following example.

"one line \n another line"

All Escape sequence will start with backslash (\)

The following table lists the special characters that you can use in JavaScript

strings.

Table 4.1 JavaScript special characters

Special Character Character Meaning

\b Backspace

\f Form feed

 72

\n New line

\r Carriage return

\t Tab

\' Apostrophe or single quote

\" Double quote

\a audible alert

\v vertical tab

\\ single backslash character

\? Question mark

You can insert a quotation mark inside a string by preceding it with a

backslash. This is known as escaping the quotation mark.

Eg.:

alert(“Hi Friend! \a”);

alert(“Good Luck!!! \n”);

alert(“ \t You’ll need it!!!\t”);

4.4. Expressions and Operators

Expressions

An expression is any valid set of literals, variables, operators, and

expressions that evaluates to a single value; the value can be a number, a

string, or a logical value.

Conceptually, there are two types of expressions: those that assign a

value to a variable, and those that simply have a value. For example, the

expression x =7 is an expression that assigns x the value seven. This expression

itself evaluates to seven. Such expressions use assignment operators. On the

other hand, the expression 3 +4 simply evaluates to seven; it does not perform

an assignment. The operators used in such expressions are referred to simply

as operators.

JavaScript has the following types of expressions:

Arithmetic: evaluates to a number, for example 3.14159

 73

String: evaluates to a character string, for example, “Fred” or

“234”

Logical: evaluates to true or false

Operators

JavaScript has the following types of operators. This section describes

the operators and contains information about operator precedence.

Assignment Operators

Comparison Operators

Arithmetic Operators

Bitwise Operators

Logical Operators

String Operators

Special Operators

JavaScript has both binary and unary operators. A binary operator

requires two operands, one before the operator and one after the operator:

operand1 operator operand2

For example, 3+4 or x*y.

A unary operator requires a single operand, either before or after the operator:

operator operand

or

operand operator

For example, x++ or ++x.

In addition, JavaScript has one ternary operator, the conditional

operator. A ternary operator requires three operands.

 Assignment Operators

An assignment operator assigns a value to its left operand based on the

value of its right operand. The basic assignment operator is equal (=), which

assigns the value of its right operand to its left operand.

That is, x = y assigns the value of y to x.

 74

The other assignment operators are shorthand for standard operations,

as shown in the following table.

Table 4.2 Assignment operators

Shorthand operator Meaning

x += y x = x + y

x -= y x = x - y

x *= y x = x * y

x /= y x = x / y

x %= y x = x % y

x <<= y x = x << y

x >>= y x = x >> y

x >>>= y x = x >>> y

x &= y x = x & y

x ^= y x = x ^ y

x |= y x = x | y

Comparison Operators

A comparison operator compares its operands and returns a logical value

based on whether the comparison is true. The operands can be numerical or

string values. Strings are compared based on standard lexicographical ordering,

using Unicode values.

Equal (==)

Returns true if the operands are equal. If the two operands are not of the

same type, JavaScript

attempts to convert the operands to an appropriate type for the comparison.

3 == var1

"3" == var1

3 == '3'

Not equal (!=)

 75

Returns true if the operands are not equal. If the two operands are not of

the same type, JavaScript attempts to convert the operands to an

appropriate type for the comparison.

var1 != 4

var2 != "3"

Strict equal (===)

Returns true if the operands are equal and of the same type.

3 === var1

Strict not equal (!==)

Returns true if the operands are not equal and/or not of the same type.

var1 !== "3"

3 !== '3'

Greater than (>)

Returns true if the left operand is greater than the right operand.

var2 > var1

Greater than or equal (>=)

Returns true if the left operand is greater than or equal to the right

operand.

var2 >= var1

var1 >= 3

Less than (<)

Returns true if the left operand is less than the right operand.

var1 < var2

Less than or equal (<=)

Returns true if the left operand is less than or equal to the right operand.

var1 <= var2

var2 <= 5

 76

Arithmetic Operators

Arithmetic operators take numerical values (either literals or variables)

as their operands and return a single numerical value. The standard arithmetic

operators are addition (+), subtraction (-), multiplication (*), and division (/).

These operators work as they do in most other programming languages, except

the / operator returns a floating-point division in JavaScript, not a truncated

division as it does in languages such as C or Java. For example:

1/2 //returns 0.5 in JavaScript

1/2 //returns 0 in Java

Explanation of Mathematical Operations

Symbol Meaning Example

! Not if(answer != ‘Q’)

++ / -- incrementing/decrementing covered later

% modulus – remainder covered later

+ - / * normal arithmetic symbols

< less than 4 < 8 = = True

<= less than or equal to 6 <= 6 = = True

> greater than 6 > 4 = = True

>= greater than or equal to 6 > = 6 = = True

= = used to COMPARE – if they are equal if (answer = = ‘Q’)

! = used to COMPARE – if they are NOT equal if(answer != ‘Q’)

&& And covered later

| | Or covered later

Comparison Examples

var teststrings1 = ("JavaScript" == "JavaScript");

var teststrings2 = ("JavaScript" == "javascript");

 77

var testnumbers1 = (1.785 == 1.785);

var testnumbers2 = (5 != 5);

var testbooleans1 = (true == true);

var testbooleans2 = (false != false);

var testlessthan1 = (100 < 200);

var testlessthan2 = (100 < 100);

var testlessthan_or_equal = (100 <= 100);

var testgreaterthan = (-1 > 1);

var a = 8, b = 8.0, testvariables1 = (a == b);

var c = null, d = null, testvariables2 = (c == d);

var result = "TEST STRINGS 1: "+ teststrings1+ " 2: " + teststrings2+ "\n\n";

result += "TEST NUMBERS 1: " +testnumbers1+ " 2: " + testnumbers2+ "\n\n";

result += "TEST BOOLEANS 1: " +testbooleans1 + " 2: " +testbooleans2+

"\n\n";

result += "TEST LESS THAN 1: " +testlessthan1+ " 2: " +testlessthan2+ "\n\n";

result += "TEST LESS THAN OR EQUAL: " +testlessthan_or_equal+ "\n\n";

result += "TEST GREATER THAN: " +testgreaterthan+ "\n\n";

result += "TEST VARIABLES 1: " +testvariables1+ " 2: " +testvariables2+

"\n\n";

alert(result);

Order of Operations

Highest priority ! ++x --x

 * / % (Modulus)

 + -

 < <= >

>=

 = = (Identical) ! = (Not Identical)

 && (And)

Lowest priority | | (Or) x++ x--

 78

• Make sure you use ()’s to specify order you wish to calculate

a = b * c – d % e / f; // not clear

a = (b * c) – ((d % e) / f); // much clearer

var addnum = 20 + 30;

var addstr = "I love " + "JavaScript";

var sub = 35.75 - 28.25;

var mul = 8 * 50;

var mod = 65 % 2;

var inc = 5 ; inc = ++inc;

var dec = 5 ; dec = --dec;

var result = "Addnum is " + addnum + "\n";

result += "Addstr is " + addstr + "\n";

result += "Sub is " + sub + "\n";

result += "Mul is " + mul + "\n";

result += "Mod is " + mod + "\n";

result += "Inc is " + inc + "\n";

result += "Dec is " + dec + "\n";

alert (result);

 79

Bitwise Operators

Bitwise operators treat their operands as a set of 32 bits (zeros and

ones), rather than as decimal, hexadecimal, or octal numbers. For example, the

decimal number nine has a binary representation of 1001. Bitwise operators

perform their operations on such binary representations, but they return

standard JavaScript numerical values.

Bitwise Logical Operators

Conceptually, the bitwise logical operators work as follows:

The operands are converted to thirty-two-bit integers and expressed by a

series of bits (zeros and ones). Each bit in the first operand is paired with the

corresponding bit in the second operand: first bit to first bit, second bit to

second bit, and so on.

The operator is applied to each pair of bits, and the result is constructed

bitwise.

Table 4.3. Bitwise operators

Operator Usage Description

Bitwise AND a & b Returns a one in each bit position for which

the corresponding bits of both operands are

ones.

Bitwise OR a | b Returns a one in each bit position for which

the corresponding bits of either or both

operands are ones.

Bitwise XOR a ^ b Returns a one in each bit position for which

the corresponding bits of either but not both

operands are ones.

Bitwise NOT ~ a Inverts the bits of its operand.

Left shift a << b Shifts a in binary representation b bits to left,

shifting in zeros from the right.

Right shift a >> b Shifts a in binary representation b bits to

right, discarding bits shifted off.

 80

Zero-fill right shift a >>> b Shifts a in binary representation b bits to the

right, discarding bits shifted off, and shifting

in zeros from the left.

For example, the binary representation of nine is 1001, and the binary

representation of fifteen is 1111. So, when the bitwise operators are applied to

these values, the results are as follows:

15 & 9 yields 9 (1111 & 1001 = 1001)

15 | 9 yields 15 (1111 | 1001 = 1111)

15 ^ 9 yields 6 (1111 ^ 1001 = 0110)

Bitwise Shift Operators

The bitwise shift operators take two operands: the first is a quantity to be

shifted, and the second specifies the number of bit positions by which the first

operand is to be shifted. The direction of the shift operation is controlled by the

operator used.

Shift operators convert their operands to thirty-two-bit integers and

return a result of the same type as the left operator.

The shift operators are listed in the following table.

Table 3.5 Bitwise shift operators

Operator Description

<< (Left shift) This operator shifts the first operand the specified

number of bits to the left. Excess bits shifted off to

the left are discarded. Zero bits are shifted in from

the right.

Example 9<<2 yields 36, because 1001 shifted 2 bits to the left becomes

100100, which is 36.

>> (Sign-propagating This operator shifts the first operand the specified

right shift) number of bits to the right. Excess bits shifted off to

the right are discarded. Copies of the leftmost bit are

shifted in from the left.

 81

Example 9>>2 yields 2, because 1001 shifted 2 bits to the right

becomes 10, which is 2. Likewise, -9>>2 yields -3, because the

sign is preserved.

>>> (Zero-fill right shift) This operator shifts the first operand the

specified number of bits to the right. Excess

bits shifted off to the right are discarded. Zero

bits are shifted in from the left.

Example 19>>>2 yields 4, because 10011 shifted 2 bits to the right

becomes 100, which is 4.

For non-negative numbers, zero-fill right shift and sign-propagating right shift

yield the same result.

4.5. Special Operators

typeof

The typeof operator is used in either of the following ways:

1. typeof operand

2. typeof (operand)

The typeof operator returns a string indicating the type of the

unevaluated operand. operand is the string, variable, keyword, or object for

which the type is to be returned. The parentheses are optional. Suppose you

define the following variables:

var myFun = new Function("5+2")

var shape="round"

var size=1

var today=new Date()

The typeof operator returns the following results for these variables:

typeof myFun is object

typeof shape is string

typeof size is number

typeof today is object

typeof dontExist is undefined

 82

For the keywords true and null, the typeof operator returns the following

results:

typeof true is boolean

typeof null is object

For a number or string, the typeof operator returns the following results:

typeof 62 is number

typeof 'Hello world' is string

For property values, the typeof operator returns the type of value the property

contains:

typeof document.lastModified is string

typeof window.length is number

typeof Math.LN2 is number

For methods and functions, the typeof operator returns results as follows:

typeof blur is function

typeof eval is function

typeof parseInt is function

typeof shape.split is function

For predefined objects, the typeof operator returns results as follows:

typeof Date is function

typeof Function is function

typeof Math is function

typeof Option is function

typeof String is function

void

The void operator is used in either of the following ways:

1. void (expression)

2. void expression

The void operator specifies an expression to be evaluated without

returning a value. expression is a JavaScript expression to evaluate. The

 83

parentheses surrounding the expression are optional, but it is good style to use

them. You can use the void operator to specify an expression as a hypertext

link. The expression is evaluated but is not loaded in place of the current

document. The following code creates a hypertext link that does nothing when

the user clicks it. When the user clicks the link, void(0) evaluates to 0, but that

has no effect in JavaScript.

Click here to do nothing

The following code creates a hypertext link that submits a form when the user

clicks it.

 Click here to

submit

4.6. Let us Sum Up

Java Script is an interpreted programming language that is embedded in

a web browser. It is not a JAVA Programming Language. T

Java Scripting can be implemented any one of two types

• Inline scripting, place code INSIDE the HTML code

• Much like an external style sheet in design, file outside of

HTML contains JAVASCRIPT code

All default function described in JavaScript are lower case AND case

sensitive. All command in JavaScript are case sensitive.

Two types of comments are there

• Single line comment //

• Multiple line comment /* code */

 Variables

 Java Script use var to declare ANY type of variable. In Java Script

variables are loosely typed. It may or may not have to initialize the variable.

 Escape Sequences

Special Character Character Meaning

\b Backspace

\f Form feed

 84

\n New line

\r Carriage return

\t Tab

\' Apostrophe or single quote

\" Double quote

\a audible alert

\v vertical tab

\\ single backslash character

\? Question mark

Expressions

An expression is any valid set of literals, variables, operators, and

expressions that evaluates to a single value; the value can be a number, a

string, or a logical value.

Operators

JavaScript has the following types of operators. This section describes

the operators and contains information about operator precedence.

Assignment Operators

Comparison Operators

Arithmetic Operators

Bitwise Operators

Logical Operators

String Operators

Special Operators

Explanation of Mathematical Operations

Symbol Meaning Example

! Not if(answer != ‘Q’)

++ / -- incrementing/decrementing covered later

% modulus – remainder covered later

 85

+ - / * normal arithmetic symbols

< less than 4 < 8 = = True

<= less than or equal to 6 <= 6 = = True

> greater than 6 > 4 = = True

>= greater than or equal to 6 > = 6 = = True

= = used to COMPARE – if they are equal if (answer = = ‘Q’)

! = used to COMPARE – if they are NOT equal if(answer != ‘Q’)

&& And covered later

| | Or covered later

Order of Operations

Highest priority ! ++x --x

 * / % (Modulus)

 + -

 < <= > >=

 = = (Identical) ! = (Not Identical)

 && (And)

Lowest priority | | (Or) x++ x--

Bitwise Operators

Bitwise operators treat their operands as a set of 32 bits (zeros and

ones), rather than as decimal, hexadecimal, or octal numbers. For example, the

decimal number nine has a binary representation of 1001. Bitwise operators

perform their operations on such binary representations, but they return

standard JavaScript numerical values.

 86

Bitwise Logical Operators

Operator Usage Description

Bitwise AND a & b Returns a one in each bit position for which

the corresponding bits of both operands are

ones.

Bitwise OR a | b Returns a one in each bit position for which

the corresponding bits of either or both

operands are ones.

Bitwise XOR a ^ b Returns a one in each bit position for which

the corresponding bits of either but not both

operands are ones.

Bitwise NOT ~ a Inverts the bits of its operand.

Left shift a << b Shifts a in binary representation b bits to left,

shifting in zeros from the right.

Right shift a >> b Shifts a in binary representation b bits to

right, discarding bits shifted off.

Zero-fill right shift a >>> b Shifts a in binary representation b bits to the

right, discarding bits shifted off, and shifting

in zeros from the left.

Bitwise shift operators

Operator Description

<< (Left shift) This operator shifts the first operand the specified

number of bits to the left. Excess bits shifted off to

the left are discarded. Zero bits are shifted in from

the right.

>> (Sign-propagating This operator shifts the first operand the specified

right shift) number of bits to the right. Excess bits shifted off to

the right are discarded. Copies of the leftmost bit are

shifted in from the left.

 87

>>> (Zero-fill right shift) This operator shifts the first operand the

specified number of bits to the right. Excess

bits shifted off to the right are discarded. Zero

bits are shifted in from the left.

typeof

The typeof operator is used in either of the following ways:

1. typeof operand

2. typeof (operand)

The typeof operator returns a string indicating the type of the

unevaluated operand. operand is the string, variable, keyword, or object for

which the type is to be returned. The parentheses are optional. Suppose you

define the following variables:

void

The void operator is used in either of the following ways:

1. void (expression)

2. void expression

The void operator specifies an expression to be evaluated without

returning a value. expression is a JavaScript expression to evaluate. The

parentheses surrounding the expression are optional, but it is good style to use

them. You can use the void operator to specify an expression as a hypertext

link. The expression is evaluated but is not loaded in place of the current

document. The following code creates a hypertext link that does nothing when

the user clicks it. When the user clicks the link, void(0) evaluates to 0, but that

has no effect in JavaScript.

Click here to do nothing

The following code creates a hypertext link that submits a form when the user

clicks it.

 Click here to

submit

 88

4.7 Lesson End Activities

1. What is the need of variable?

2. What is bit wise operator

3. What is the purpose of typedef operator?

4.8 Check your progress

1. Explain Operator hierarchy with an example.

2. Write a program for arithmetic operation.

4.9 Reference

1. WWW.W3C

2. Thomas A. Powell, “The Complete Reference HTML and XHTML”,

fourth Edition, Tata McGraw Hill.

3. Deitel, Deitel, Nieto, “Internet and World Wide Web – How to

Program”, Pearson Education Asia, 2003

 89

Lesson 5

JavaScript – Control Structures

Contents

5.0. Aim and Objectives

5.1. Introduction

5.2. Control Statements

5.3. loop statements

5.4. label statement

5.5. break statement

5.6. Logical Operator

5.7. Let us Sum Up

5.8. Lesson end Activities

5.9. Check your Progress

5.10. Reference

5.0. Aim and Objectives

• To understand the programe flow

• To learn various control structure available in JavaScript

5.1. Introduction

JavaScript supports a compact set of statements that you can use to

incorporate a great deal of interactivity in Web pages.

5.2. Conditional Statements

A conditional statement is a set of commands that executes if a specified

condition is true. JavaScript supports two conditional statements: if...else and

switch.

if...else Statement

if structure

• is a single-selection structure because it selects or ignores a single

action.

 90

if (condition 1) (if)

- if/else structure

The if/else structure is called a double-selection structure, because it

selects between two different actions. if/else’s’ tells the program to choose

and execute one or the other body of code, depending on the values or

conditions

if (condition 1) (if)

else (else)

example:

if(grade >= 70)

{

alert(“You passed”);

}

else

{

alert(“You failed”);

}

Use the if statement to perform certain statements if a logical condition is

true; use the optional else clause to perform other statements if the condition is

false. An if statement looks as follows:

if (condition) {

statements1

}

else {

statements2

}

 91

The condition can be any JavaScript expression that evaluates to true or

false. The statements to be executed can be any JavaScript statements,

including further nested if statements. If you want to use more than one

statement after an if or else statement, you must enclose the statements in

curly braces, {}.

Do not confuse the primitive Boolean values true and false with the true

and false values of the Boolean object. Any object whose value is not undefined

or null, including a Boolean object whose value is false, evaluates to true when

passed to a conditional statement. For example:

var b = new Boolean(false);

if (b) // this condition evaluates to true

Example. In the following example, the function checkData returns true if the

number of characters in a Text object is three; otherwise, it displays an alert

and returns false.

function checkData () {

if (document.form1.threeChar.value.length == 3) {

return true

} else {

alert("Enter exactly three characters. " +

document.form1.threeChar.value + " is not valid.")

return false

}

}

switch Statement

To use a switch statement if we know a limited range of ONE variable

A switch statement allows a program to evaluate an expression and

attempt to match the expression’s value to a case label. If a match is found, the

program executes the associated statement.

 92

Keywords used:

� case

• denotes a clause

� default

• if no clauses match, uses THIS line as a default

clause

• does NOT have a break after since LAST in list

� break

• all cases use, after LAST line in case statement

• breaks out of switch statement

A switch statement looks as follows:

switch (expression){

case label :

statement;

break;

case label :

statement;

break;

...

default : statement;

}

The program first looks for a label matching the value of expression and

then executes the associated statement. If no matching label is found, the

program looks for the optional default statement, and if found, executes the

associated statement. If no default statement is found, the program continues

execution at the statement following the end of switch.

The optional break statement associated with each case label ensures

that the program breaks out of switch once the matched statement is executed

and continues execution at the statement following switch. If break is omitted,

the program continues execution at the next statement in the switch statement.

 93

Example. In the following example, if expr evaluates to "Bananas", the program

matches the value with case "Bananas" and executes the associated statement.

When break is encountered, the program terminates switch and executes the

statement following switch. If break were omitted, the statement for case

"Cherries" would also be executed.

switch (expr) {

case "Oranges" :

document.write("Oranges are Rs.40 per Kg.
");

break;

case "Apples" :

document.write("Apples are Rs.80 per Kg.
");

break;

case "Bananas" :

document.write("Bananas are Rs. 24 per Kg.
");

break;

case "Cherries" :

document.write("Cherries are Rs.40 per Kg.
");

break;

default :

document.write("Sorry, we are out of " + i + ".
");

}

document.write("Is there anything else you'd like?
");

5.3. Loop Statements

A loop is a set of commands that executes repeatedly until a specified

condition is met. JavaScript supports the for, do while, while, and label loop

statements (label is not itself a looping statement, but is frequently used with

these statements). In addition, you can use the break and continue statements

within loop statements.

 94

for Statement

A for loop repeats until a specified condition evaluates to false. The

JavaScript for loop is similar to the Java and C for loop. A for statement looks

as follows:

for ([initialExpression]; [condition]; [incrementExpression]) {

statements

}

When a for loop executes, the following occurs:

1. Initialization

The initializing expression initial-expression, if any, is executed.

This expression usually initializes one or more loop counters, but the

syntax allows an expression of any degree of complexity. In any loop that

we use, a variable will be the sole controller of when the loop is started

and ended. The variable can be a number that will need to change form a

starting value, to an ending value, usually the start and ending values

are big enough to warrant a loop. The variable can also be a char, and

when the char finally matches, the loop ends.

2. Testing/Condition

In any loop we create, there MUST be a condition where our

variable will fail (so the loop will end). Conditions in a loop will look the

same conditions we covered in IF statements. The condition expression

is evaluated. If the value of condition is true, the loop statements

execute. If the value of condition is false, the for loop terminates.

3. The statements execute.

4. The update expression increment Expression executes, and control

returns to Step 2.

Incrementing/Decrementing

++ - add one

-- - subtract one

x++ - value changed AFTER modification/loop in code completed

++x - value changed BEFORE modification/loop in code completed

 95

Example. The following function contains a for statement that counts the

number of selected options in a scrolling list (a Select object that allows

multiple selections). The for statement declares the variable i and initializes it to

zero. It checks that i is less than the number of options in the Select object,

performs the succeeding if statement, and increments i by one after each pass

through the loop.

<SCRIPT>

function howMany(selectObject) {

var numberSelected=0

for (var i=0; i < selectObject.options.length; i++) {

if (selectObject.options[i].selected==true)

numberSelected++

}

return numberSelected

}

</SCRIPT>

<P>Choose some music types, then click the button below:

<SELECT NAME="musicTypes" MULTIPLE>

<OPTION SELECTED> R&B

<OPTION> Jazz

<OPTION> Blues

<OPTION> New Age

<OPTION> Classical

<OPTION> Opera

</SELECT>

<P><INPUT TYPE="button" VALUE="How many are selected?"

onClick="alert ('Number of options selected: ' +

howMany(document.selectForm.musicTypes))">

</FORM>

 96

do...while Statement

The do...while statement repeats until a specified condition evaluates to

false. A do...while statement looks as follows:

do {

statement

} while (condition)

statement executes once before the condition is checked. If condition returns

true, the statement executes again. At the end of every execution, the condition

is checked. When the condition returns false, execution stops and control

passes to the statement following do...while.

Example. In the following example, the do loop iterates at least once and

reiterates until i is no longer less than 5.

do {

i+=1;

document.write(i);

} while (i<5);

while Statement

A while statement executes its statements as long as a specified

condition evaluates to true. A while statement looks as follows:

while (condition) {

statements

}

If the condition becomes false, the statements within the loop stop executing

and control passes to the statement following the loop.

The condition test occurs before the statements in the loop are executed.

If the condition returns true, the statements are executed and the condition is

tested again. If the condition returns false, execution stops and control is

passed to the statement following while.

 97

Example 1. The following while loop iterates as long as n is less than three:

n = 0

x = 0

while(n < 3) {

n ++

x += n

}

With each iteration, the loop increments n and adds that value to x. Therefore,

x and n take on the following values:

 After the first pass: n = 1 and x = 1

 After the second pass: n = 2 and x = 3

 After the third pass: n = 3 and x = 6

After completing the third pass, the condition n < 3 is no longer true, so the

loop terminates.

Example 2: infinite loop. Make sure the condition in a loop eventually

becomes false; otherwise, the loop will never terminate. The statements in the

following while loop execute forever because the condition never becomes false:

while (true) {

alert("Hello, world")

5.4. label Statement

A label provides a statement with an identifier that lets you refer to it

elsewhere in your program. For example, you can use a label to identify a loop,

and then use the break or continue statements to indicate whether a program

should interrupt the loop or continue its execution.

The syntax of the label statement looks like the following:

label :

statement

The value of label may be any JavaScript identifier that is not a reserved

word. The statement that you identify with a label may be any type.

 98

Example. In this example, the label markLoop identifies a while loop.

markLoop:

while (theMark == true)

doSomething();

}

5.5. break Statement

Use the break statement to terminate a loop, switch, or label statement.

When you use break with a while, do-while, for, or switch statement,

break terminates the innermost enclosing loop or switch immediately and

transfers control to the following statement.

 When you use break within an enclosing label statement, it terminates

the statement and transfers control to the following statement. If you specify a

label when you issue the break, the break statement terminates the specified

statement.

The syntax of the break statement looks like the following:

1. break

2. break [label]

The first form of the syntax terminates the innermost enclosing loop,

switch, or label; the second form of the syntax terminates the specified

enclosing label statement.

Example. The following example iterates through the elements in an array until

it finds the index of an element whose value is theValue:

for (i = 0; i < a.length; i++) {

if (a[i] = theValue);

break;

}

5.6. continue Statement

The continue statement can be used to restart a while, do-while, for, or label

statement.

 99

In a while or for statement, continue terminates the current loop and

continues execution of the loop with the next iteration. In contrast to the break

statement, continue does not terminate the execution of the loop entirely. In a

while loop, it jumps back to the condition. In a for loop, it jumps to the

increment-expression.

In a label statement, continue is followed by a label that identifies a label

statement. This type of continue restarts a label statement or continues

execution of a labelled loop with the next iteration. Continue must be in a

looping statement identified by the label used by continue.

The syntax of the continue statement looks like the following:

1. continue

2. continue [label]

Example 1. The following example shows a while loop with a continue

statement that executes when the value of i is three. Thus, n takes on the

values one, three, seven, and twelve.

i = 0

n = 0

while (i < 5) {

i++

if (i == 3)

continue

n += i

Example 2. A statement labeled checkiandj contains a statement labeled

checkj. If continue is encountered, the program terminates the current iteration

of checkj and begins the next iteration. Each time continue is encountered,

checkj reiterates until its condition returns false. When false is returned, the

remainder of the checkiandj statement is completed, and checkiandj reiterates

until its condition returns false. When false is returned, the program continues

at the statement following checkiandj. If continue had a label of checkiandj, the

program would continue at the top of the checkiandj statement. checkiandj :

 100

while (i<4) {

document.write(i + "
");

i+=1;

checkj :

while (j>4) {

document.write(j + "
");

j-=1;

if ((j%2)==0);

continue checkj;

document.write(j + " is odd.
");

}

document.write("i = " + i + "
");

document.write("j = " + j + "
");

}

5.7. Logical Operators

Logical operators are typically used with Boolean (logical) values; when

they are, they return a Boolean value. However, the && and || operators

actually return the value of one of the specified operands, so if these operators

are used with non-Boolean values, they may return a non-Boolean value. The

logical operators are described in the following table.

Table 5.1. Logical Operator

Operator Usage Description

&& expr1 && expr2 (Logical AND) Returns expr1 if it can be

converted to false; otherwise, returns expr2.

Thus, when used with Boolean values, &&

returns true if both operands are true;

otherwise, returns false.

 101

|| expr1 || expr2 (Logical OR) Returns expr1 if it can

be converted to true; otherwise, returns expr2.

Thus, when used with Boolean values, ||

returns true if either operand is true; if both

are false, returns false.

! !expr (Logical NOT) Returns false if its single

operand can be converted to true; otherwise,

returns true.

The following code shows examples of the && (logical AND) operator.

a1=true && true // t && t returns true

a2=true && false // t && f returns false

a3=false && true // f && t returns false

a4=false && (3 == 4) // f && f returns false

a5="Cat" && "Dog" // t && t returns Dog

a6=false && "Cat" // f && t returns false

a7="Cat" && false // t && f returns false

The following code shows examples of the || (logical OR) operator.

1=true || true // t || t returns true

2=false || true // f || t returns true

3=true || false // t || f returns true

4=false || (3 == 4) // f || f returns false

5="Cat" || "Dog" // t || t returns Cat

6=false || "Cat" // f || t returns Cat

7="Cat" || false // t || f returns Cat

The following code shows examples of the ! (logical NOT) operator.

n1=!true // !t returns false

n2=!false // !f returns true

n3=!"Cat" // !t returns false

 102

Short-Circuit Evaluation

As logical expressions are evaluated left to right, they are tested for

possible “short-circuit” evaluation using the following rules:

 false && anything is short-circuit evaluated to false.

 true || anything is short-circuit evaluated to true.

The rules of logic guarantee that these evaluations are always correct.

Note that the anything part of the above expressions is not evaluated, so any

side effects of doing so do not take effect.

5.8. Let us Sum Up

JavaScript supports a compact set of statements that you can use to

incorporate a great deal of interactivity in Web pages.

Conditional Statements

A conditional statement is a set of commands that executes if a specified

condition is true. JavaScript supports two conditional statements: if...else and

switch.

if...else Statement

Use the if statement to perform certain statements if a logical condition is

true; use the optional else clause to perform other statements if the condition is

false. The condition can be any JavaScript expression that evaluates to true or

false. The statements to be executed can be any JavaScript statements,

including further nested if statements. If you want to use more than one

statement after an if or else statement, you must enclose the statements in

curly braces, {}.

switch Statement

A switch statement allows a program to evaluate an expression and

attempt to match the expression’s value to a case label. If a match is found, the

program executes the associated statement.

Loop Statements

A loop is a set of commands that executes repeatedly until a specified

condition is met. JavaScript supports the for, do while, while, and label loop

statements (label is not itself a looping statement, but is frequently used with

 103

these statements). In addition, you can use the break and continue statements

within loop statements.

for Statement

A for loop repeats until a specified condition evaluates to false. The

JavaScript for loop is similar to the Java and C for loop.

do...while Statement

The do...while statement repeats until a specified condition evaluates to

false.

while Statement

A while statement executes its statements as long as a specified

condition evaluates to true.

label Statement

A label provides a statement with an identifier that lets you refer to it

elsewhere in your program. For example, you can use a label to identify a loop,

and then use the break or continue statements to indicate whether a program

should interrupt the loop or continue its execution.

break Statement

Use the break statement to terminate a loop, switch, or label statement.

When you use break with a while, do-while, for, or switch statement,

break terminates the innermost enclosing loop or switch immediately and

transfers control to the following statement.

continue Statement

The continue statement can be used to restart a while, do-while, for, or label

statement.

Logical Operators

Logical operators are typically used with Boolean (logical) values; when

they are, they return a Boolean value. However, the && and || operators

actually return the value of one of the specified operands, so if these operators

are used with non-Boolean values, they may return a non-Boolean value.

 104

5.9. Lesson end Activities

 1. What is the advantage of switch statement.

 2. Explain logical operator in JavaScript.

5.10. Check your Progress

1. What is the purpose of break and continue statement.

2. Write a javascript program using for loop for displaying number 1 to 100.

5.11. Reference

1. WWW.W3C

2. Thomas A. Powell, “The Complete Reference HTML and XHTML”,

fourth Edition, Tata McGraw Hill.

3. Deitel, Deitel, Nieto, “Internet and World Wide Web – How to Program”,

Pearson Education Asia, 2003

 105

Lesson 6

JavaScript - Functions

Contents

6.0. Aim and Objectives

6.1. Introduction

6.2. Programmer Defined function

6.3. Function calling function and Multiple Arguments

6.4. Scope Rule

6.5. Predefined Functions

6.6. Recursion

6.7. Recursion vs Iteration

6.8. Let us Sum Up

6.9. Lesson end Activities

6.10. Check your Progress

6.11. Reference

6.0. Aim and Objectives

 To understand how to construct program modularly

 To be able to create new function

6.1. Introduction

 Best way to develop and maintain a large program is to construct it from

small, simple pieces, or modules.

Program Modules in JavaScript

Modules in JavaScript is called functions. The predefined functions that

belong to JavaScript objects are often called methods. The programmesr can

write functions to define specific tasks that may be used at many points in a

script. These functions are referred to as programmed defined functions.

 106

 A function is invoked by a function call. The function call specifies the

function name and provides information that the called function needs to

perform its task.

6.2. Programmer-Defined functions

 Functions allow the programmer to modularize a program. All variables

declared in function definitions are local variables – this means that they are

known only in the function in which they are defined. Most functions have a list

of parameters that provide the means for communicating information between

functions via function call.

Defining Functions

A function definition consists of the function keyword, followed by the

name of the function. A list of arguments to the function enclosed in

parentheses and separated by commas. The JavaScript statements that define

the function are enclosed in curly braces, { }. The statements in a function can

include calls to other functions defined in the current application.

Generally, you should define all your functions in the HEAD of a page so

that when a user loads the page, the functions are loaded first. Otherwise, the

user might perform an action while the page is still loading that triggers an

event handler and calls an undefined function, leading to an error.

Function Syntax : HTML code

<html>

<head>

 <title>First Function</title>

 <script type="text/javascript" src="first-fcn.js">

 </script>

</head>

<body onload = "call_alert()">

 <p> </p>

</body>

</html>

 107

First-fcn.js file

// a function to display a message in an alert dialog

function call_alert()

{

 alert("My First JavaScript Function");

}

Output of the above

6.3. Functions calling Functions & Multiple arguments.

Defining a function does not execute it. Defining the function simply

names the function and specifies what to do when the function is called. Calling

the function actually performs the specified actions with the indicated

parameters.

The call to the other function will look exactly the same as if it came from

the HTML file. There may be more than one time where a function calls other

functions.

Call from HTML

<html>

<head>

 <title>Multiple Functions</title>

 <script type="text/javascript" src="multi-fcn.js">

 </script>

</head>

 <body onload = "call_alert(4)">

 <p> </p>

</body>

 </html>

 108

Call from another function

// a function to call a second function

// and display a returned result

function call_alert(num)

{

 var new_number = make_double(num);

 alert("The Value Is " + new_number);

}

// a function to double a value

// and return the result to the caller

function make_double(num)

{

 var double_num = num + num;

 return double_num;

}

6.4. Scope Rules

 The scope of an identifier for a variable functions is the portion of the

program in which the identifier can be referenced. Global variables or script

levels variables are declared in head elements of the documents and they can

be accessible in any part of a script and are said to have global scope.

 Identifiers declared inside a function have function local scope and can

be used only in that function. Function scope begins with the opening left brace

({) of the function in which the identifier is declared and ends at the terminating

right brace (}) of the function. If the local variable in function has the same

name as global variable, the global variable is hidden from the body of the

function.

Example

<html>

<head>

<title> A Scope Example</title>

 109

<script type = “text/javascript”>

var x = 1;

function start()

{

 var x = 5;

 document.writeln(“local x in start is “ x "</p>");

 functionA();

 functionB();

 document.writeln(“local x in start is “ x "</p>");

}

Function functionA()

{

 var x = 25;

 document.writeln(“local x in start is “x "</p>");

}

Function functionB()

{

 document.writeln(“Global x in start is “ x "</p>");

}

</script>

</head>

<body onload = start() > </body>

</html>

 110

6.5. Predefined Functions

JavaScript has several top-level predefined functions:

• eval

• isFinite

• isNaN

• parseInt and parseFloat

• Number and String

• escape and unescape

eval Function

The eval function evaluates a string of JavaScript code without reference

to a particular object. The syntax of eval is:

eval(expr)

where expr is a string to be evaluated.

If the string represents an expression, eval evaluates the expression. If

the argument represents one or more JavaScript statements, eval performs the

statements. Do not call eval to evaluate an arithmetic expression; JavaScript

evaluates arithmetic expressions automatically.

isFinite Function

The isFinite function evaluates an argument to determine whether it is a

finite number. The syntax of isFinite is:

isFinite(number)

where number is the number to evaluate.

If the argument is NaN, positive infinity or negative infinity, this method

returns false, otherwise it returns true.

The following code checks client input to determine whether it is a finite

number.

if(isFinite(ClientInput) == true)

{

/* take specific steps */

}

 111

isNaN Function

The isNaN function evaluates an argument to determine if it is “NaN” (not

a number). The syntax of isNaN is:

isNaN(testValue)

where testValue is the value you want to evaluate.

The parseFloat and parseInt functions return “NaN” when they evaluate

a value that is not a number. isNaN returns true if passed “NaN,” and false

otherwise.

The following code evaluates floatValue to determine if it is a number and

then calls a procedure accordingly:

floatValue=parseFloat(toFloat)

if (isNaN(floatValue)) {

notFloat()

} else {

isFloat()

}

parseInt and parseFloat Functions

The two “parse” functions, parseInt and parseFloat, return a numeric

value when given a string as an argument. The syntax of parseFloat is

parseFloat(str)

where parseFloat parses its argument, the string str, and attempts to

return a floating-point number. If it encounters a character other than a sign (+

or -), a numeral (0-9), a decimal point, or an exponent, then it returns the value

up to that point and ignores that character and all succeeding characters. If the

first character cannot be converted to a number, it returns “NaN” (not a

number). The syntax of parseInt is

parseInt(str [, radix])

parseInt parses its first argument, the string str, and attempts to return

an integer of the specified radix (base), indicated by the second, optional

argument, radix. For example, a radix of ten indicates to convert to a decimal

number, eight octal, sixteen hexadecimal, and so on. For radixes above ten, the

 112

letters of the alphabet indicate numerals greater than nine. For example, for

hexadecimal numbers (base 16), A through F are used.

If parseInt encounters a character that is not a numeral in the specified

radix, it ignores it and all succeeding characters and returns the integer value

parsed up to that point. If the first character cannot be converted to a number

in the specified radix, it returns “NaN.” The parseInt function truncates the

string to integer values.

Number and String Functions

The Number and String functions let you convert an object to a number

or a string. The syntax of these functions is:

Number(objRef)

String(objRef)

where objRef is an object reference.

The following example converts the Date object to a readable string.

D = new Date (430054663215)

// The following returns

// "Thu Aug 18 04:37:43 GMT-0530 (Indian Standard Time) 2008"

x = String(D)

escape and unescape Functions

The escape and unescape functions let you encode and decode strings.

The escape function returns the hexadecimal encoding of an argument in the

ISO Latin character set. The unescape function returns the ASCII string for the

specified hexadecimal encoding value. The syntax of these functions is:

escape(string)

unescape(string)

These functions are used primarily with server-side JavaScript to encode

and decode name/value pairs in URLs.

escape(string)

unescape(string)

 113

These functions are used primarily with server-side JavaScript to encode

and decode name/value pairs in URLs.

6.6. Recursion

 A recursion function is a function that calls itself, either directly, or

indirectly through another function.

<html>

<head>

<title> Recursice Factorial Function</title>

<script language = “javascript”>

 document.writeln(“<h1> Factorial of 1 to 10 </h1>");

 for (var = 0; i <= 10; i++)

 document.writeln(i "</p>" + factorial(i));

 function factorial (number)

 {

 if (number <= 1)

 return 1;

 else

 return number * factorial(number - 1);

 }

</script>

</head>

<body> </body>

</html>

6.7. Recursion vs Iteration

 Both iteration and recursion are based on a control statement; Iteration

uses a repetition statement; recursion uses a selection statement. Both

iteration and recursion involves repetition; Iteration explicitly uses a repetition

statement; recursion achieves repetition through repeated function calls.

Iteration and recursion each involve a termination test; Iteration terminates

when the loop continuation condition fails; recursion terminates when a base

case is recognized.

 114

6.8. Let us Sum Up

 Best way to develop and maintain a large program is to construct it from

small, simple pieces, or modules.

 Modules in JavaScript is called functions. The predefined functions that

belong to JavaScript objects are often called methods. The programmesr can

write functions to define specific tasks that may be used at many points in a

script. These functions are referred to as programmed defined functions.

 A function definition consists of the function keyword, followed by the

name of the function. A list of arguments to the function enclosed in

parentheses and separated by commas. The JavaScript statements that define

the function are enclosed in curly braces, { }. The statements in a function can

include calls to other functions defined in the current application.

Defining a function does not execute it. Defining the function simply

names the function and specifies what to do when the function is called. Calling

the function actually performs the specified actions with the indicated

parameters.

The call to the other function will look exactly the same as if it came from

the HTML file. There may be more than one time where a function calls other

functions.

 The scope of an identifier for a variable functions is the portion of the

program in which the identifier can be referenced. Global variables or script

levels variables are declared in head elements of the documents and they can

be accessible in any part of a script and are said to have global scope.

Predefined Functions

JavaScript has several top-level predefined functions:

• eval

• isFinite

• isNaN

• parseInt and parseFloat

• Number and String

• escape and unescape

 115

above ten, the letters of the alphabet indicate numerals greater than

nine. For example, for hexadecimal numbers (base 16), A through F are used.

If parseInt encounters a character that is not a numeral in the specified

radix, it ignores it and all succeeding characters and returns the integer value

parsed up to that point. If the first character cannot be converted to a number

in the specified radix, it returns “NaN.” The parseInt function truncates the

string to integer values.

Recursion

 A recursion function is a function that calls itself, either directly, or

indirectly through another function.

Recursion vs Iteration

 Both iteration and recursion are based on a control statement; Iteration

uses a repetition statement; recursion uses a selection statement. Both

iteration and recursion involves repetition; Iteration explicitly uses a repetition

statement; recursion achieves repetition through repeated function calls.

Iteration and recursion each involve a termination test; Iteration terminates

when the loop continuation condition fails; recursion terminates when a base

case is recognized.

6.9. Lesson end Activities

1. What is local and global variable?

2. Explain any two predefined function.

6.10. Check your progress

1. How values are transfer into a function body?

2. Write a recursion program.

6.11. Reference

1. WWW.W3C

2. Thomas A. Powell, “The Complete Reference HTML and XHTML”,

fourth Edition, Tata McGraw Hill.

3. Deitel, Deitel, Nieto, “Internet and World Wide Web – How to

Program”, Pearson Education Asia, 2003

 116

 117

Lesson 7

JavaScript - Arrays

Contents

7.0. Aim and Objective

7.1. Introduction

7.2. Array Objects

7.3. Using Arrays

7.4. Arrays Methods

7.5. Deleting array elements

7.6. Passing array to function

7.7. Sorting Arrays

7.8. Searching Arrays

7.9. Multi Dimensional Arrays

7.10. Let us Sum Up

7.11. Lesson end Activities

7.12. Check your Progress

7.13. Reference

7.0. Aim and Objective

• To understand JavaScript Arrays concepts

• To learn Javascript Array processing

7.1. Introduction

Arrays are one of the most powerful programming tools available. They

provide the programmer with a way of organizing a collection of homogeneous

data items (i.e. items that have the same type and the same length) into a single

data structure. An array, then, is a data structure that is made up of a number

of variables all of which have the same data type; for example, all the exam

scores for a class of ten MIS students.

 118

The individual data items that make up the array are referred to as the

elements of the array. Elements in the array are distinguished from one another

by the use of an index or subscript, enclosed in parentheses or brackets,

following the array name. The subscript indicates the position of an element

within the array. The subscript or index may be a number or a variable, and

may then be used to access any item within the valid bounds of an array.

Arrays are an internal data structure, i.e. they are required only for the

duration of the program in which they are defined. They are a very convenient

mechanism for storing and manipulating a collection of similar data items in a

program, and a programmer should be familiar with the operations most

commonly performed on them. The most typical operations performed on arrays

are:

• loading a set of initial values into the elements of an array;

• processing the elements of an array;

• searching an array, using a linear or binary search, for a particular

element; and

• Writing out the contents of an array to a report.

7.2. Array Object

JavaScript does not have an explicit array data type. However, you can

use the predefined Array object and its methods to work with arrays in your

applications. The Array object has methods for manipulating arrays in various

ways, such as joining, reversing, and sorting them. It has a property for

determining the array length and other properties for use with regular

expressions. Arrays can grow dynamically – just add new elements at the end.

Arrays can have holes, elements that have no value. Array elements can be

anything numbers, strings, or arrays!

Creating an Array

An array in JavaScript is an Array object. The process of creating new

objects is knows as creating an instance. All objects are created in JavaScript

using the new keyword. The syntax for declaring an array is

1. arrayObjectName = new Array(element0, element1, ..., elementN)

 119

2. arrayObjectName = new Array(arrayLength)

arrayObjectName is either the name of a new object or a property of an existing

object. When using Array properties and methods, arrayObjectName is either

the name of an existing Array object or a property of an existing object.

element0, element1, ..., elementN is a list of values for the array’s elements.

When this form is specified, the array is initialized with the specified values as

its elements, and the array’s length property is set to the number of arguments.

arrayLength is the initial length of the array.

var arrayName = new Array(n);

where the keyword Array is used to indicate that the object is an array,

and n is the number of elements in the array. For example, to declare an array

called score that has 10 elements, you would write

var score = new Array(10);

Arrays occupy space in memory. The array declaration instructs the

computer to reserve ten blocks of memory. Each block of memory will be able to

hold a single value from the score array. Each value is assigned to a position

within the array, called the element/s index. You can use the index to refer to

individual elements in the array.

 120

Above Figure illustrates an array of integer values named score used for

a 10-student MCA class. The name of the array is score. Array names follow the

same conventions as other identifiers. The array score contains 10 elements.

Any one of these elements may be referred to by giving the name of the array

followed by the index of the particular element in square brackets ([]). The

numbering of elements within an array starts with an index number of zero (0).

For example, the first element in the score array is score[0], the second element

is score[1], the third element is score[2], and so on. In general, the ith element

of array x is referred to as x[i-1]. The value of score[0] is 78, the value of

score[1] is 98, and so on.

As with all variables, the value of each element within the array is

undefined until you assign the element a value. The process of assigning values

to elements in an array is called populating the array. To populate the array,

specify the index number, and then assign the value to each element. Elements

are not required to have an assigned value when the array is created. The

syntax for populating an array is

arrayName[index] = value;

Any value that can be stored in a variable can be stored in an element in

an array. Although array elements are often used to store strings or numbers,

they can be used to store any valid data type.

The following sample code illustrates how to populate the array score

that contains ten elements.

score[0] = 78;

score[1] = 98;

score[2] = 89;

score[3] = 92;

score[4] = 76;

score[5] = 86;

score[6] = 94;

score[7] = 100;

score[8] = 78;

score[9] = 88;

 121

7.3. Using Arrays

After the array is created and populated, the program can retrieve the

value of any element in the array. To retrieve the value of an array element, use

the array name and the index number of the element. The value from the array

is then available to be used in an expression, displayed in a Web page, or

placed into a variable. The script of Figure 20-2 illustrates an example of using

arrays. This example declares two empty arrays (score and grade) and shows

you how the arrays can grow dynamically to accommodate new elements. The

function populate_Array() allows the user to input the exam scores. Then the

program calls the function convert_to_grade() to convert the scores into

grades. Finally the function output_Array() is invoked to display the contents of

each array as HTML tables.

Every array in JavaScript knows its own length. The length of the array

is determined by the expression:

arrayName.length

Note the expression score.length in the for structure condition to

determine the length of the array. In this example, the length of the array is 10,

so the loop continues executing as long as the value of control variable i is less

than 10. For a 10-element array, the index values are 0 through 9, so using the

less than operator, <, guarantees that the loop does not attempt to access an

element beyond the end of the array. Referring to an element outside the array

bounds is normally a logic error. Figure 20-2 also shows you the first two user

inputs and final report.

Notice that the function output_Array() receives two arguments?a string

to be output as the caption of the table and the array to output. To pass an

array argument to a function, specify the name of the array (a reference to the

array) without brackets.

Referring to Array Elements

 You refer to an array’s elements by using the element’s ordinal number.

For example, suppose you define the following array:

myArray = new Array("Wind","Rain","Fire")

 122

You then refer to the first element of the array as myArray[0] and the

second element of the array as myArray[1].

The index of the elements begins with zero (0), but the length of array (for

example, myArray.length) reflects the number of elements in the array.

7.4. Array Methods

The Array object has the following methods:

concat joins two arrays and returns a new array.

join joins all elements of an array into a string.

pop removes the last element from an array and returns that element.

push adds one or more elements to the end of an array and returns that

last element added.

reverse transposes the elements of an array: the first array element

becomes the last and the last becomes the first.

shift removes the first element from an array and returns that element

slice extracts a section of an array and returns a new array.

splice adds and/or removes elements from an array.

sort sorts the elements of an array.

unshift adds one or more elements to the front of an array and returns the

new length of the array.

For example, suppose you define the following array:

myArray = new Array("Wind","Rain","Fire")

myArray.join() returns “Wind,Rain,Fire”; myArray.reverse transposes the

array so that myArray[0] is “Fire”, myArray[1] is “Rain”, and myArray[2] is

“Wind”. myArray.sort sorts the array so that myArray[0] is “Fire”, myArray[1] is

“Rain”, and myArray[2] is “Wind”.

Extra Commas in Array Literals

You do not have to specify all elements in an array literal. If you put two

commas in a row, the array is created with spaces for the unspecified elements.

The following example creates the fish array:

 123

fish = ["Lion", , "Angel"]

This array has two elements with values and one empty element (fish[0]

is “Lion”, fish[1] is undefined, and fish[2] is “Angel”):

If you include a trailing comma at the end of the list of elements, the

comma is ignored. In the following example, the length of the array is three.

There is no myList[3]. All other commas in the list indicate a new element.

myList = [’home’, , ’school’,];

In the following example, the length of the array is four, and myList[0] is

missing.

myList = [, ’home’, , ’school’];

In the following example, the length of the array is four, and myList[3] is

missing. Only the last comma is ignored. This trailing comma is optional.

myList = [’home’, , ’school’, ,];

Arrays and Regular Expressions

When an array is the result of a match between a regular expression and

a string, the array returns properties and elements that provide information

about the match. An array is the return value of regexp.exec, string.match, and

string.replace.

7.5. Deleting array elements

When you delete an array element, the array length is not affected. For

example, if you delete a[3], a[4] is still a[4] and a[3] is undefined. When the

delete operator removes an array element, that element is no longer in the

array. In the following example, trees[3] is removed with delete.

trees=new Array("redwood","bay","cedar","oak","maple")

delete trees[3]

if (3 in trees) {

// this does not get executed

If you want an array element to exist but have an undefined value, use

the undefined keyword instead of the delete operator. In the following example,

trees[3] is assigned the value undefined, but the array element still exists:

 124

trees=new Array("redwood","bay","cedar","oak","maple")

trees[3]=undefined

if (3 in trees) {

// this gets executed

}

JavaScript arrays are ?dynamic? entities, in that they can change size

after they are created. An array contains a set of data represented by a single

variable name. Thus, an array is a group of memory locations that all have the

same name and are normally of the same type (although this is not required).

You can think of an array as a collection of variables contained within a single

variable. To refer to a particular location or element in the array, we specify the

name of the array and the position number (index) of the particular element in

the array.

7.6. Passing Arrays to Functions

In many programming languages there are two ways to pass arguments

to functions: pass-by-value (or call-by-value) and pass-by-reference (or call-by-

reference). When you pass an argument by value, the computer creates a copy

of the argument in memory, and only the copy is passed to the receiving

function. Although the receiving function can change the contents of the copy,

it cannot change the contents of the original argument.

If, on the other hand, you pass an argument by reference, the computer

passes the argument?s actual address in memory. Because the actual address

is passed to the receiving function, the receiving function has the ability to

directly access the argument?s data, and thus the contents of the argument

can be changed permanently by the receiving function.

In some programming language, arguments can be passed either by

value or by reference. Programmers can control which way the arguments are

passed. However, JavaScript does not allow the programmer to choose whether

to pass each argument by value or by reference. In JavaScript, numbers and

Boolean values are passed to functions by value, and arrays and all other

objects are passed to functions by reference.

 125

Although entire arrays are passed by using pass-by-reference, individual

numeric and Boolean array element are passed by using pass-by-value exactly

as simple numeric and Boolean variables are passed. Such simple single pieces

of data are called scalars. To pass an array element to a function, use the name

of the array followed by index number within brackets as an argument in the

function call. Figure 20-3 uses an example to demonstrate the difference

between passing an entire array and passing an array element. The array

named a is declared and initialized in the statement

var a = [1, 2, 3, 4, 5];

If an array/s element values are known in advance, the elements of the array

can be declared and initialized in this way. A comma-separated initializer list is

enclosed in square brackets ([]). Note that the preceding declaration does not

require the keyword new to create the array object. You also can use the

statement

var a = new Array(1, 2, 3, 4, 5);

to declare and initialize array a. In this case, the initial values of the array

elements are specified as arguments in the parentheses following new Array.

In the example first passes the array a to function modify_array().

Function modify_array() multiplies each element of array a by 2. To illustrate

that the elements of array a were modified, function output_array() is used to

display the contents of array a after it is modified. Then the program passes the

forth element a[3] of array a to function modify_element(). Since a[3] element

is actually one integer in the array a, a copy of a[3] is passed. Function

modify_element() multiplies its argument by 2 and stores the result in its

parameter e. Since the parameter of function modify_element() is a local

variable in that function, the local variable is destroyed when the function

terminates. The element a[3] still holds unmodified value.

In function output_array(), the statement

document.write(header + theArray.join(", ") + "
");

uses Array method join to create a string containing all the elements in

theArray. Method join takes as its argument a string containing the separator

 126

that should be used to separate the elements of the array in the string that is

returned.

The statement

 for (var i in theArray)

 theArray[i] *= 2;

 shows the syntax of a for/in structure. Inside the parentheses, we declare the

variable i that will be used to select each element in the object (theArray, in

this case) to the right of keyword in. In the for/in structure, JavaScript

automatically determines the number of elements in the object. In the case of

an Array object (theArray, in this case), the value assigned to variable i is a

subscript in the range from 0 up to (but not including) theArray.length.

The arguments of a function are maintained in an array. Within a

function, you can address the parameters passed to it as follows:

arguments[i]

functionName.arguments[i]

where i is the ordinal number of the argument, starting at zero. So, the first

argument passed to a function would be arguments[0]. The total number of

arguments is indicated by arguments.length.

Using the arguments array, you can call a function with more arguments

than it is formally declared to accept. This is often useful if you don’t know in

advance how many arguments will be passed to the function. You can use

arguments.length to determine the number of arguments actually passed to the

function, and then treat each argument using the arguments array. For

example, consider a function that concatenates several strings. The only formal

argument for the function is a string that specifies the characters that separate

the items to concatenate. The function is defined as follows:

function myConcat(separator) {

result="" // initialize list

// iterate through arguments

for (var i=1; i<arguments.length; i++) {

result += arguments[i] + separator

 127

}

return result

}

You can pass any number of arguments to this function, and it creates a

list

using each argument as an item in the list.

// returns "red, orange, blue, "

myConcat(", ","red","orange","blue")

// returns "elephant; giraffe; lion; cheetah;"

myConcat("; ","elephant","giraffe","lion", "cheetah")

// returns "sage. basil. oregano. pepper. parsley. "

myConcat(". ","sage","basil","oregano", "pepper", "parsley")

7.7. Sorting Arrays

Sorting data (i.e. arranging data in alphabetical, numerical, or

chronological order) is one of the most important computing applications.

Virtually every organization must sort some data. A sort is an algorithm for

ordering an array. Sorting data is an intriguing problem that has attracted

intense research efforts in the field of computer science. This section introduces

the simplest known sorting algorithm: the bubble sort (also called the sinking

sort). Smaller values gradually ?bubble? their way to the top of the array like

air bubbles rising in water and larger values ?sink? to the bottom of the array.

This technique compares adjacent items and swaps those that are out of order.

If this process is repeated enough times, the list will be ordered. Bubble sort is

to make several passes through the array. On each pass, successive pairs of

elements are compared. Sorting an array requires a pair of nested loops. The

inner loop performs a single pass and the outer loop controls the number of

passes.

The script creates the function bubble_sort() to perform the bubble-sort

task. In this example, an array of string is passed to the function bubble_sort()

through the argument theArray. The array is automatically passed by call-by-

reference.

 128

First the bubble_sort() function compares theArray[0] to theArray[1],

theArray[1] to theArray[2], then theArray[2] to theArray[3], and so on until it

completes the pass by comparing the last two elements of theArray. On the

first pass, the largest value is guaranteed to sink to the bottom element of the

array. Therefore, the second pass does not have to consider it and so requires

one less comparison. At the end of the second pass, the last tow items will be in

their proper position. Thus, each successive pass requires one less comparison.

This example uses the event ONLOAD, which calls an event handler

when the <BODY>; of the HTML document is completely loaded into the

browser window. In this example, the function start() is called by the browser

as the event handler for the <BODY>?s ONLOAD event.

7.8. Searching Arrays

A common operation on arrays is to search the elements of an array for a

particular data item. Searching is the process of finding a particular element of

an array. One approach would be to start with the first element of the array and

compares each element to the array with the search key (the value you want to

find) until a match was found. This searching algorithm is called a linear

search (or sequential search). The sequential search works well for unsorted

arrays. If the array is sorted, the high-speed binary search algorithm can be

used.

The binary search algorithm removes from consideration one half of the

elements in the array being searched after each comparison. The algorithm

locates the middle element of the array and compares it to the search key to

determine in which half of the array the search key lies. The other half is then

discarded and the retained half is temporarily regarded as the entire array. The

process is repeated until the item is found.

The function binary_search() locates the middle element of theArray and

compare it to the searchKey. If they are equal, the searchKey is found and the

array index of that element is returned. If the searchKey does not match the

middle element of the array, the low index or high index is adjusted so that a

smaller sub-array can be searched. If the searchKey is less than the middle

element, the high index is set to middle - 1, and the search is continued on the

 129

elements from low to middle - 1. If the searchKey is greater than the middle

element, the low index is set to middle + 1, and the search is continued on the

elements from middle + 1 to high.

The expression searchForm.inputVal.value specifies the value property

of the text field inputVal. The value property specifies the text to display in the

text field. To access this property, we specify the name of the form

(searchForm) that contains the text field followed by a dot operator (.) followed

by the name of the text field we would like to manipulate. The dot operator is

also known as the field access operator or the member access operator. In the

preceding expression, the dot operator is used to access the inputVal member

of the searchForm form. Similarly, the second member access operator is used

to access the value member (or property) of the inputVal text field.

7.9. Multiple-Dimensional Arrays

Each array discussed so far held a single list of items. Such arrays are

called one-dimensional arrays or single-subscripted array, that is, only one

subscript is needed to locate an element in an array. In some business

applications, there is a need for multiple-dimensional arrays, where two or more

subscripts are required to locate an element in an array. Multiple-dimensional

arrays with two subscripts are called two-dimensional arrays and often used to

represent tables of values consisting of information arranged in rows and

columns.

To store the contents of tables, a two-dimensional array uses two

subscripts, each with its own range. The range of the first subscript is

determined by the number of rows in the table, and the range of the second

subscript is determined by the number of columns. JavaScript does not support

multiple-dimensional arrays directly, but allows the programmer to specify one-

dimensional arrays whose elements are also one-dimensional array, thus

achieving the same effect.

 130

Fig. : Two Dimensional Array

Above Figure illustrates a two-dimensional array, a, with three rows and

fours columns (a 3-by-4 array). Every element in array a is identified by an

element name of the form a[i][j]; a is the name of the array and i and j are the

indexes that uniquely identify the row and column of each element in a. For

example, to declare and initialize an array name mileageArray for the

preceding road mileage example, we may use the following statement:

 var mileageArray = [[0, 2054, 802, 738], [2054, 0, 2786, 2706],

 [802, 2786, 0, 100], [738, 2706, 100, 0]];

 The values are grouped by row in square in square brackets. So, [0, 2054, 802,

738] initialize the first row; that is, mileage[0][0], mileage[0][1], mileage[0][2],

and mileage[0][3]. And [2054, 0, 2786, 2706] initialize the second row, and so

on. Thus, two-dimensional array are maintained as arrays of arrays. It is also

possible to create a two-dimensional array in which each row has a different

number of columns. For example, the declaration

var a = [[1, 2], [3, 4, 5, 6]];

created and initialized array a with row 0 containing two elements and row 1

containing four elements. A two-dimensional array can also be declared as

follows:

var a;

a = new Array(2); // declare rows

a[0] = new Array(2); // declare columns in row 0

a[1] = new Array(4); // declare columns in row 1

 131

The preceding statements create a tow-dimensional array with two rows. Row 0

contains 2 columns and row 1 contains four columns.

Since a two-dimensional array is organized in columns within row order,

it is common to used a nested for structure to handle the array.

7.10 Let us Sum Up

JavaScript does not have an explicit array data type. However, you can

use the predefined Array object and its methods to work with arrays in your

applications. The Array object has methods for manipulating arrays in various

ways, such as joining, reversing, and sorting them.

An array in JavaScript is an Array object. The process of creating new

objects is knows as creating an instance. All objects are created in JavaScript

using the new keyword.

 You refer to an array’s elements by using the element’s ordinal number

The Array object has the following methods:

concat joins two arrays and returns a new array.

join joins all elements of an array into a string.

pop removes the last element from an array and returns that element.

push adds one or more elements to the end of an array and returns that

last element added.

reverse transposes the elements of an array: the first array element

becomes the last and the last becomes the first.

shift removes the first element from an array and returns that element

slice extracts a section of an array and returns a new array.

splice adds and/or removes elements from an array.

sort sorts the elements of an array.

unshift adds one or more elements to the front of an array and returns the

new length of the array.

You do not have to specify all elements in an array literal. If you put two

commas in a row, the array is created with spaces for the unspecified elements.

 132

When an array is the result of a match between a regular expression and

a string, the array returns properties and elements that provide information

about the match. An array is the return value of regexp.exec, string.match, and

string.replace.

When you delete an array element, the array length is not affected.

The arguments of a function are maintained in an array. Within a

function, you can address the parameters passed to it as follows:

arguments[i]

functionName.arguments[i]

where i is the ordinal number of the argument, starting at zero. So, the first

argument passed to a function would be arguments[0]. The total number of

arguments is indicated by arguments.length.

Sorting data (i.e. arranging data in alphabetical, numerical, or

chronological order) is one of the most important computing applications.

Virtually every organization must sort some data. A sort is an algorithm for

ordering an array. Sorting data is an intriguing problem that has attracted

intense research efforts in the field of computer science. This section introduces

the simplest known sorting algorithm: the bubble sort (also called the sinking

sort).

A common operation on arrays is to search the elements of an array for a

particular data item. Searching is the process of finding a particular element of

an array. One approach would be to start with the first element of the array and

compares each element to the array with the search key (the value you want to

find) until a match was found. This searching algorithm is called a linear

search (or sequential search). The sequential search works well for unsorted

arrays. If the array is sorted, the high-speed binary search algorithm can be

used.

The function binary_search() locates the middle element of theArray and

compare it to the searchKey. If they are equal, the searchKey is found and the

array index of that element is returned. If the searchKey does not match the

middle element of the array, the low index or high index is adjusted so that a

smaller sub-array can be searched. If the searchKey is less than the middle

 133

element, the high index is set to middle - 1, and the search is continued on the

elements from low to middle - 1. If the searchKey is greater than the middle

element, the low index is set to middle + 1, and the search is continued on the

elements from middle + 1 to high.

Each array discussed so far held a single list of items. Such arrays are

called one-dimensional arrays or single-subscripted array, that is, only one

subscript is needed to locate an element in an array. In some business

applications, there is a need for multiple-dimensional arrays, where two or more

subscripts are required to locate an element in an array. Multiple-dimensional

arrays with two subscripts are called two-dimensional arrays and often used to

represent tables of values consisting of information arranged in rows and

columns.

To store the contents of tables, a two-dimensional array uses two

subscripts, each with its own range. The range of the first subscript is

determined by the number of rows in the table, and the range of the second

subscript is determined by the number of columns. JavaScript does not support

multiple-dimensional arrays directly, but allows the programmer to specify one-

dimensional arrays whose elements are also one-dimensional array, thus

achieving the same effect.

7.11. Lesson end Activities

1. Describe JavaScript Array.

2. How JavaScript implement two dimensional array.

7.12 Check your Progress

1. Write a JavaScript array program implement array multiplication.

2. Write a JavaScript program to implement binary search.

7.13. Reference

1. WWW.W3C

2. Thomas A. Powell, “The Complete Reference HTML and XHTML”,

fourth Edition, Tata McGraw Hill.

3. Deitel, Deitel, Nieto, “Internet and World Wide Web – How to Program”,

Pearson Education Asia, 2003

 134

 135

Lesson 8

JavaScript – Objects

Contents

8.0. Aim and Objective

8.1. Introduction

8.2. Objects and Properties

8.3. Using Object Initialization

8.4. Using a Construction function

8.5. Indexing Objects

8.6. Defining properties for an Object type

8.7. Using this for Object reference

8.8. Predefined core objects

 8.8.1. Boolean Object

 8.8.2. Date Object

 8.8.3. Function Object

 8.8.4. Math Object

 8.8.5. Number Object

 8.8.6. String Object

8.9. Object manipulation statements

8.10. Let us Sum Up

8.11. Lesson end Activities

8.12. Check Your progress

8.13. Reference

8.0. Aim and Objective

• To understand how to use objects, properties, functions, and methods,

• To understand how to create your own objects.

 136

8.1. Introduction

JavaScript is designed on a simple object-based paradigm. An object is a

construct with properties that are JavaScript variables or other objects. An

object also has functions associated with it that are known as the object’s

methods. In addition to objects that are predefined in the Navigator client and

the server, you can define your own objects.

8.2. Objects and Properties

A JavaScript object has properties associated with it. You access the

properties of an object with a simple notation:

objectName.propertyName

Both the object name and property name are case sensitive. You define a

property by assigning it a value. For example, suppose there is an object named

myCar (for now, just assume the object already exists). You can give it

properties named make, model, and year as follows:

myCar.make = "Ford"

myCar.model = "Mustang"

myCar.year = 1969;

An array is an ordered set of values associated with a single variable

name. Properties and arrays in JavaScript are intimately related; in fact, they

are different interfaces to the same data structure. So, for example, you could

access the properties of the myCar object as follows:

myCar["make"] = "Ford"

myCar["model"] = "Mustang"

myCar["year"] = 1967

This type of array is known as an associative array, because each index

element is also associated with a string value. To illustrate how this works, the

following function displays the properties of the object when you pass the object

and the object’s name as arguments to the function:

function show_props(obj, obj_name) {

var result = ""

 137

for (var i in obj)

result += obj_name + "." + i + " = " + obj[i] + "\n"

return result

}

So, the function call show_props(myCar, "myCar") would return the

following:

myCar.make = Ford

myCar.model = Mustang

myCar.year = 1967

An object literal is a list of zero or more pairs of property names and

associated values of an object, enclosed in curly braces ({}). You should not use

an object literal at the beginning of a statement. This will lead to an error.

The following is an example of an object literal. The first element of the

car object defines a property, myCar; the second element, the getCar property,

invokes a function (Cars("honda")); the third element, the special property, uses

an existing variable (Sales).

var Sales = "Toyota";

function CarTypes(name) {

if(name == "Honda")

return name;

else

return "Sorry, we don’t sell " + name + ".";

}

car = {myCar: "Saturn", getCar: CarTypes("Honda"), special: Sales}

document.write(car.myCar); // Saturn

document.write(car.getCar); // Honda

document.write(car.special); // Toyota

 138

8.3. Using Object Initializers

In addition to creating objects using a constructor function, you can

create objects using an object initializer. Using object initializers is sometimes

referred to as creating objects with literal notation. “Object initializer” is

consistent with the terminology used by C++.

The syntax for an object using an object initializer is:

objectName = {property1:value1, property2:value2,..., propertyN:valueN}

where objectName is the name of the new object, each propertyI is an identifier

(either a name, a number, or a string literal), and each valueI is an expression

whose value is assigned to the propertyI. The objectName and assignment is

optional. If you do not need to refer to this object elsewhere, you do not need to

assign it to a variable.

If an object is created with an object initializer in a top-level script,

JavaScript interprets the object each time it evaluates the expression

containing the object literal. In addition, an initializer used in a function is

created each time the function is called.

The following statement creates an object and assigns it to the variable x

if and only if the expression cond is true.

if (cond) x = {hi:"there"}

The following example creates myHonda with three properties. Note that

the engine property is also an object with its own properties.

myHonda = {color:"red",wheels:4,engine:{cylinders:4,size:2.2}}

8.4. Using a Constructor Function

You can also create an object with these two steps:

1. Define the object type by writing a constructor function.

2. Create an instance of the object with new.

To define an object type, create a function for the object type that

specifies its name, properties, and methods. For example, suppose you want to

create an object type for cars. You want this type of object to be called car, and

 139

you want it to have properties for make, model, year, and color. To do this, you

would write the following function:

function car(make, model, year) {

this.make = make

this.model = model

this.year = year

}

Notice the use of this to assign values to the object’s properties based on

the values passed to the function.

Now you can create an object called mycar as follows:

mycar = new car("Eagle", "Talon TSi", 1993)

This statement creates mycar and assigns it the specified values for its

properties. Then the value of mycar.make is the string “Eagle”, mycar.year is

the integer 1993, and so on. You can create any number of car objects by calls

to new. For example, kenscar = new car("Nissan", "300ZX", 1992)

vpgscar = new car("Mazda", "Miata", 1990)

An object can have a property that is itself another object. For example,

suppose you define an object called person as follows:

function person(name, age, sex) {

this.name = name

this.age = age

this.sex = sex

}

and then instantiate two new person objects as follows:

rand = new person("Rand McKinnon", 33, "M")

ken = new person("Ken Jones", 39, "M")

Then you can rewrite the definition of car to include an owner property

that takes a person object, as follows:

function car(make, model, year, owner) {

this.make = make

 140

this.model = model

this.year = year

this.owner = owner

}

To instantiate the new objects, you then use the following:

car1 = new car("Eagle", "Talon TSi", 1993, rand)

car2 = new car("Nissan", "300ZX", 1992, ken)

Notice that instead of passing a literal string or integer value when

creating the new objects, the above statements pass the objects rand and ken

as the arguments for the owners. Then if you want to find out the name of the

owner of car2, you can access the following property:

car2.owner.name

Note that you can always add a property to a previously defined object.

For example, the statement

car1.color = "black"

adds a property color to car1, and assigns it a value of “black.” However, this

does not affect any other objects. To add the new property to all objects of the

same type, you have to add the property to the definition of the car object type.

8.5. Indexing Object Properties

In JavaScript you can initially define a property by its name, you must

always refer to it by its name, and if you initially define a property by an index,

you must always refer to it by its index.

This applies when you create an object and its properties with a

constructor function, as in the above example of the Car object type, and when

you define individual properties explicitly (for example, myCar.color = "red"). So

if you define object properties initially with an index, such as myCar[5] = "25

mpg", you can subsequently refer to the property as myCar[5].

The exception to this rule is objects reflected from HTML, such as the

forms array. You can always refer to objects in these arrays by either their

ordinal number (based on where they appear in the document) or their name (if

defined). For example, if the second <FORM> tag in a document has a NAME

 141

attribute of “myForm”, you can refer to the form as document.forms[1] or

document.forms["myForm"] or document.myForm.

8.6. Defining Properties for an Object Type

You can add a property to a previously defined object type by using the

prototype property. This defines a property that is shared by all objects of the

specified type, rather than by just one instance of the object. The following code

adds a color property to all objects of type car, and then assigns a value to the

color property of the object car1.

Car.prototype.color=null

car1.color="black"

Defining Methods

A method is a function associated with an object. You define a method

the same way you define a standard function. Then you use the following

syntax to associate the function with an existing object:

object.methodname = function_name

where object is an existing object, methodname is the name you are assigning

to the method, and function_name is the name of the function.

You can then call the method in the context of the object as follows:

object.methodname(params);

You can define methods for an object type by including a method definition in

the object constructor function. For example, you could define a function that

would format and display the properties of the previously-defined car objects;

for example,

function displayCar() {

var result = "A Beautiful " + this.year + " " + this.make

+ " " + this.model

pretty_print(result)

}

 where pretty_print is function to display a horizontal rule and a string.

 142

Notice the use of this to refer to the object to which the method belongs.

You can make this function a method of car by adding the statement

this.displayCar = displayCar; to the object definition. So, the full definition of

car would now look like

function car(make, model, year, owner) {

this.make = make

this.model = model

this.year = year

this.owner = owner

this.displayCar = displayCar

}

Then you can call the displayCar method for each of the objects as follows:

car1.displayCar()

car2.displayCar()

8.7. Using this for Object References

JavaScript has a special keyword, this, that you can use within a method

to refer to the current object. For example, suppose you have a function called

validate that validates an object’s value property, given the object and the high

and low values:

function validate(obj, lowval, hival) {

if ((obj.value < lowval) || (obj.value > hival))

alert("Invalid Value!")

}

Then, you could call validate in each form element’s onChange event

handler, using this to pass it the form element, as in the following example:

<INPUT TYPE="text" NAME="age" SIZE=3

onChange="validate(this, 18, 99)">

In general, this refers to the calling object in a method. When combined

with the form property, this can refer to the current object’s parent form. In the

following example, the form myForm contains a Text object and a button. When

 143

the user clicks the button, the value of the Text object is set to the form’s name.

The button’s onClick event handler uses this.form to refer to the parent form,

myForm.

<FORM NAME="myForm">

Form name:<INPUT TYPE="text" NAME="text1" VALUE="Beluga">

<P>

<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"

onClick="this.form.text1.value=this.form.name">

</FORM>

Deleting Objects

You can remove an object by using the delete operator. The following

code shows how to remove an object.

myobj=new Number()

delete myobj // removes the object and returns true

8.8. Predefined Core Objects

8.8.1 Boolean Object

The Boolean object is a wrapper around the primitive Boolean data type.

Use the following syntax to create a Boolean object:

booleanObjectName = new Boolean(value)

Do not confuse the primitive Boolean values true and false with the true

and false values of the Boolean object. Any object whose value is not undefined

or null, including a Boolean object whose value is false, evaluates to true when

passed to a conditional statement. See “if...else Statement” on page 80 for more

information.

8.8.2. Date Object

JavaScript does not have a date data type. However, you can use the

Date object and its methods to work with dates and times in your applications.

The Date object has a large number of methods for setting, getting, and

manipulating dates. It does not have any properties. JavaScript handles dates

similarly to Java. The two languages have many of the same date methods, and

 144

both languages store dates as the number of milliseconds since January 1,

1970, 00:00:00. The Date object range is -100,000,000 days to 100,000,000

days relative to 01 January, 1970 UTC.

To create a Date object:

dateObjectName = new Date([parameters])

where dateObjectName is the name of the Date object being created; it can be a

new object or a property of an existing object.

The parameters in the preceding syntax can be any of the following:

today = new Date().

A string representing a date in the following form: “Month day, year

hours:minutes:seconds.” For example, Xmas95 = new Date("December 25,

1995 13:30:00"). If you omit hours, minutes, or seconds, the value will be set to

zero.

A set of integer values for year, month, and day. For example, Xmas95 =

new Date(1995,11,25). A set of values for year, month, day, hour, minute, and

seconds. For example, Xmas95 = new Date(1995,11,25,9,30,0).

Methods of the Date Object

The Date object methods for handling dates and times fall into these

broad categories: “set” methods, for setting date and time values in Date

objects. “get” methods, for getting date and time values from Date objects. “to”

methods, for returning string values from Date objects. parse and UTC

methods, for parsing Date strings.

With the “get” and “set” methods you can get and set seconds, minutes,

hours, day of the month, day of the week, months, and years separately. There

is a getDay method that returns the day of the week, but no corresponding

setDay method, because the day of the week is set automatically. These

methods use integers to represent these values as follows:

 Seconds and minutes: 0 to 59

 Hours: 0 to 23

 Day: 0 (Sunday) to 6 (Saturday)

 Date: 1 to 31 (day of the month)

 145

 Months: 0 (January) to 11 (December)

 Year: years since 1900

For example, suppose you define the following date:

Xmas95 = new Date("December 25, 1995")

Then Xmas95.getMonth() returns 11, and Xmas95.getFullYear() returns

95. The getTime and setTime methods are useful for comparing dates. The

getTime method returns the number of milliseconds since January 1, 1970,

00:00:00 for a Date object.

For example, the following code displays the number of days left in the current

year:

today = new Date()

endYear = new Date(1995,11,31,23,59,59,999) // Set day and month

endYear.setFullYear(today.getFullYear()) // Set year to this year

msPerDay = 24 * 60 * 60 * 1000 // Number of milliseconds per day

daysLeft = (endYear.getTime() - today.getTime()) / msPerDay

daysLeft = Math.round(daysLeft) //returns days left in the year

This example creates a Date object named today that contains today’s

date. It then creates a Date object named endYear and sets the year to the

current year. Then, using the number of milliseconds per day, it computes the

number of days between today and endYear, using getTime and rounding to a

whole number of days.

The parse method is useful for assigning values from date strings to

existing Date objects. For example, the following code uses parse and setTime to

assign a date value to the IPOdate object:

IPOdate = new Date()

IPOdate.setTime(Date.parse("Aug 9, 1995"))

Using the Date Object: an Example

In the following example, the function JSClock() returns the time in the

format of a digital clock.

 146

function JSClock() {

var time = new Date()

var hour = time.getHours()

var minute = time.getMinutes()

var second = time.getSeconds()

var temp = "" + ((hour > 12) ? hour - 12 : hour)

temp += ((minute < 10) ? ":0" : ":") + minute

temp += ((second < 10) ? ":0" : ":") + second

temp += (hour >= 12) ? " P.M." : " A.M."

return temp

 }

The JSClock function first creates a new Date object called time; since no

arguments are given, time is created with the current date and time. Then calls

to the getHours, getMinutes, and getSeconds methods assign the value of the

current hour, minute and seconds to hour, minute, and second. The next four

statements build a string value based on the time. The first statement creates a

variable temp, assigning it a value using a conditional expression; if hour is

greater than 12, (hour - 13), otherwise simply hour. The next statement

appends a minute value to temp. If the value of minute is less than 10, the

conditional expression adds a string with a preceding zero; otherwise it adds a

string with a demarcating colon. Then a statement appends a seconds value to

temp in the same way. Finally, a conditional expression appends “PM” to temp

if hour is 12 or greater; otherwise, it appends “AM” to temp.

8.8.3. Function Object

The predefined Function object specifies a string of JavaScript code to be

compiled as a function.

To create a Function object:

functionObjectName = new Function ([arg1, arg2, ... argn], functionBody)

 147

functionObjectName is the name of a variable or a property of an existing

object. It can also be an object followed by a lowercase event handler name,

such as window.onerror. arg1, arg2, ... argn are arguments to be used by the

function as formal argument names. Each must be a string that corresponds to

a valid JavaScript identifier; for example “x” or “theForm”. functionBody is a

string specifying the JavaScript code to be compiled as the

function body.

Function objects are evaluated each time they are used. This is less

efficient than declaring a function and calling it within your code, because

declared functions are compiled.

In addition to defining functions as described here, you can also use the

function statement. See the Client-Side JavaScript Reference for more

information.

The following code assigns a function to the variable setBGColor. This

function sets the current document’s background color.

var setBGColor = new Function("document.bgColor='antiquewhite'")

To call the Function object, you can specify the variable name as if it

were a function. The following code executes the function specified by the

setBGColor variable:

var colorChoice="antiquewhite"

if (colorChoice=="antiquewhite") {setBGColor()}

You can assign the function to an event handler in either of the following ways:

1. document.form1.colorButton.onclick=setBGColor

2. <INPUT NAME="colorButton" TYPE="button"

VALUE="Change background color"

onClick="setBGColor()">

Creating the variable setBGColor shown above is similar to declaring the

following function:

function setBGColor() {

document.bgColor='antiquewhite'

}

 148

You can nest a function within a function. The nested (inner) function is

private to its containing (outer) function:

The inner function can be accessed only from statements in the outer

function. The inner function can use the arguments and variables of the outer

function. The outer function cannot use the arguments and variables of the

inner function.

8.8.4. Math Object

The predefined Math object has properties and methods for mathematical

constants and functions. For example, the Math object’s PI property has the

value of pi (3.141...), which you would use in an application as Math.PI

Similarly, standard mathematical functions are methods of Math. These

include trigonometric, logarithmic, exponential, and other functions. For

example, if you want to use the trigonometric function sine, you would write

Math.sin(1.56)

Note that all trigonometric methods of Math take arguments in radians. The

following table summarizes the Math object’s methods. Unlike many other

objects, you never create a Math object of your own. You always use the

predefined Math object.

Table 8.1 Methods of Math

Method Description

abs Absolute value

sin, cos, tan Standard trigonometric functions; argument in radians

acos, asin, atan Inverse trigonometric functions; return values in radians

 exp, log

Exponential and natural logarithm, base e

ceil Returns least integer greater than or equal to argument

floor Returns greatest integer less than or equal to argument

min, max Returns greater or lesser (respectively) of two arguments

pow Exponential; first argument is base, second is exponent

round Rounds argument to nearest integer

sqrt Square root

 149

It is often convenient to use the with statement when a section of code

uses several math constants and methods, so you don’t have to type “Math”

repeatedly. For example,

with (Math) {

a = PI * r*r

y = r*sin(theta)

x = r*cos(theta)

}

8.8.5. Number Object

The Number object has properties for numerical constants, such as

maximum value, not-a-number, and infinity. You cannot change the values of

these properties and you use them as follows:

biggestNum = Number.MAX_VALUE

smallestNum = Number.MIN_VALUE

infiniteNum = Number.POSITIVE_INFINITY

negInfiniteNum = Number.NEGATIVE_INFINITY

notANum = Number.NaN

You always refer to a property of the predefined Number object as shown

above, and not as a property of a Number object you create yourself. The

following table summarizes the Number object’s properties.

8.8.6. String Object

The String object is a wrapper around the string primitive data type. Do

not confuse a string literal with the String object. For example, the following

code creates the string literal s1 and also the String object s2:

s1 = "foo" //creates a string literal value

s2 = new String("foo") //creates a String object

You can call any of the methods of the String object on a string literal

value—JavaScript automatically converts the string literal to a temporary String

object, calls the method, then discards the temporary String object. You can

also use the String.length property with a string literal. You should use string

 150

literals unless you specifically need to use a String object, because String

objects can have counterintuitive behavior. For

example:

s1 = "2 + 2" //creates a string literal value

s2 = new String("2 + 2")//creates a String object

eval(s1) //returns the number 4

eval(s2) //returns the string "2 + 2"

A String object has one property, length, that indicates the number of

characters in the string. For example, the following code assigns x the value 13,

because “Hello, World!” has 13 characters:

myString = "Hello, World!"

x = mystring.length

A String object has two types of methods: those that return a variation

on the string itself, such as substring and toUpperCase, and those that return

an HTML-formatted version of the string, such as bold and link.

For example, using the previous example, both mystring.toUpperCase()

and "hello, world!".toUpperCase() return the string “HELLO, WORLD!”.

The substring method takes two arguments and returns a subset of the

string between the two arguments. Using the previous example,

mystring.substring(4, 9) returns the string “o, Wo.” See the substring method of

the String object in the Client-Side JavaScript Reference for more information.

The String object also has a number of methods for automatic HTML

formatting, such as bold to create boldface text and link to create a hyperlink.

For example, you could create a hyperlink to a hypothetical URL with the

link method as follows:

mystring.link(“http://www.helloworld.com”)

The following table summarizes the methods of String objects.

 151

Table 7.2 Methods of String

Method Description

anchor Creates HTML named anchor

big, blink, bold, Creates HTML formatted string

fixed, italics, small,

strike, sub, sup

charAt, charCodeAt Returns the character or character code at the specified

 position in string

indexOf, lastIndexOf Returns the position of specified substring in the string

 or last position of specified substring, respectively

link Creates HTML hyperlink

concat Combines the text of two strings and returns a new

string

fromCharCode Constructs a string from the specified sequence of

 ISO-Latin-1 codeset values

split Splits a String object into an array of strings by

separating the string into substrings

slice Extracts a section of an string and returns a new string.

substring, substr Returns the specified subset of the string, either by

specifying the start and end indexes or the start index

and a length

match, replace, search Used to work with regular expressions

toLowerCase,

toUpperCase Returns the string in all lowercase or all uppercase,

Respectively

8.9. Object Manipulation Statements

JavaScript uses the for...in and with statements to manipulate objects.

for...in Statement

 152

The for...in statement iterates a specified variable over all the properties

of an object. For each distinct property, JavaScript executes the specified

statements. A for...in statement looks as follows:

for (variable in object) {

statements }

Example. The following function takes as its argument an object and the

object’s name. It then iterates over all the object’s properties and returns a

string that lists the property names and their values.

function dump_props(obj, obj_name) {

var result = ""

for (var i in obj) {

result += obj_name + "." + i + " = " + obj[i] + "
"

}

result += "<HR>"

return result

}

For an object car with properties make and model, result would be:

car.make = Ford

car.model = Mustang

with Statement

The with statement establishes the default object for a set of statements.

JavaScript looks up any unqualified names within the set of statements to

determine if the names are properties of the default object. If an unqualified

name matches a property, then the property is used in the statement;

otherwise, a local or global variable is used.

A with statement looks as follows:

with (object){

statements

}

 153

Example. The following with statement specifies that the Math object is the

default object. The statements following the with statement refer to the PI

property and the cos and sin methods, without specifying an object. JavaScript

assumes the Math object for these references.

var a, x, y

var r=10

with (Math) {

a = PI * r * r

x = r * cos(PI)

y = r * sin(PI/2)

}

8.10. Let us Sum Up

A JavaScript object has properties associated with it. You access the

properties of an object with a simple notation:

objectName.propertyName

Both the object name and property name are case sensitive An array is

an ordered set of values associated with a single variable name.

Properties and arrays in JavaScript are intimately related; in fact, they

are different interfaces to the same data structure.

In addition to creating objects using a constructor function, you can

create objects using an object initializer. Using object initializers is sometimes

referred to as creating objects with literal notation

To define an object type, create a function for the object type that

specifies its name, properties, and methods.

You can add a property to a previously defined object type by using the

prototype property. This defines a property that is shared by all objects of the

specified type, rather than by just one instance of the object.

A method is a function associated with an object. You define a method

the same way you define a standard function. Then you use the following

syntax to associate the function with an existing object:

object.methodname = function_name

 154

where object is an existing object, methodname is the name you are assigning

to the method, and function_name is the name of the function.

JavaScript has a special keyword, this, that you can use within a method to

refer to the current object

Boolean Object

The Boolean object is a wrapper around the primitive Boolean data type.

Use the following syntax to create a Boolean object:

booleanObjectName = new Boolean(value)

Date Object

JavaScript does not have a date data type. However, you can use the

Date object and its methods to work with dates and times in your applications.

The Date object has a large number of methods for setting, getting, and

manipulating dates. It does not have any properties. JavaScript handles dates

similarly to Java. The two languages have many of the same date methods, and

both languages store dates as the number of milliseconds since January 1,

1970, 00:00:00. The Date object range is -100,000,000 days to 100,000,000

days relative to 01 January, 1970 UTC.

To create a Date object:

dateObjectName = new Date([parameters])

where dateObjectName is the name of the Date object being created; it can be a

new object or a property of an existing object.

Function Object

The predefined Function object specifies a string of JavaScript code to be

compiled as a function.

To create a Function object:

functionObjectName = new Function ([arg1, arg2, ... argn], functionBody)

functionObjectName is the name of a variable or a property of an existing

object. It can also be an object followed by a lowercase event handler name,

such as window.onerror. arg1, arg2, ... argn are arguments to be used by the

function as formal argument names.

 155

Math Object

The predefined Math object has properties and methods for mathematical

constants and functions. For example, the Math object’s PI property has the

value of pi (3.141...), which you would use in an application as Math.PI

Number Object

The Number object has properties for numerical constants, such as

maximum value, not-a-number, and infinity. You cannot change the values of

these properties and you use them as follows:

biggestNum = Number.MAX_VALUE

smallestNum = Number.MIN_VALUE

infiniteNum = Number.POSITIVE_INFINITY

negInfiniteNum = Number.NEGATIVE_INFINITY

notANum = Number.NaN

You always refer to a property of the predefined Number object as shown

above, and not as a property of a Number object you create yourself. The

following table summarizes the Number object’s properties.

String Object

The String object is a wrapper around the string primitive data type. Do

not confuse a string literal with the String object. For example, the following

code creates the string literal s1 and also the String object s2:

s1 = "foo" //creates a string literal value

s2 = new String("foo") //creates a String object

Object Manipulation Statements

for...in Statement

The for...in statement iterates a specified variable over all the properties

of an object. For each distinct property, JavaScript executes the specified

statements. A for...in statement looks as follows:

for (variable in object) {

statements }

 156

with Statement

The with statement establishes the default object for a set of statements.

JavaScript looks up any unqualified names within the set of statements to

determine if the names are properties of the default object. If an unqualified

name matches a property, then the property is used in the statement;

otherwise, a local or global variable is used.

A with statement looks as follows:

with (object){

statements

}

8.11. Lesson end Activities

 What is JavaScript Object?

1. How to create and delete an Object?

2. What is the purpose of JavaScript Constructor?

8.12 Check Your Progress

1. Write a JavaScript program to implement for each and with

statements.

2. Write short notes on JavaScript predefined objects.

8.13. Reference

1. WWW.W3C

2. Thomas A. Powell, “The Complete Reference HTML and XHTML”,

fourth Edition, Tata McGraw Hill.

3. Deitel, Deitel, Nieto, “Internet and World Wide Web – How to

Program”, Pearson Education Asia, 2003

 157

Lesson 9

Cascading Style Sheet (CSS)

Contents

9.0. Aim and Objective

9.1.Introduction

9.2. Structure vs Presentation

9.3. Inline Style

9.4. Creating Style Sheet with the Style Element

9.5. Conflicting Style

9.6. linking External Style Sheets

9.7. Positioning Elements

9.8. Background

9.9. Element Dimension

9.10. Text Flow and the Box Model

9.11. User Style sheet

9.12. Let us Sum Up

9.13. Lesson end Activities

9.14. Check your progress

9.15 .Reference

9.0. Aim and Objective

• To take control of the appearance of a web site by creating style sheets

• To use stylesheets to separate presentation from the content

9.1. Introduction

HTML has been primarily concerned with representing the structure of

documents online. By this, I mean that it allows the author to identify headings,

paragraphs, lists, etc., but it does not provide (very many) facilities for

specifying how the information can be presented (fonts, colors, spacing, text

flow, etc.).

 158

In the early days, this was fine; the Web was used mostly by technical

people to publish articles and documents without much emphasis on how the

documents looked. With the explosion of interest in the Web, both the audience

and the authors have changed. Many people writing and designing for the Web

want to exert much more control over the presentation of their documents. This

brings the issue of structure versus presentation into sharp relief.

9.2.Structure vs Presentation

Structural

This is an article in a journal. It has a title, an author, and an abstract.

The body of the article is divided into sections. Each section has a title

and may include subsections. Most of the article is comprised of

paragraphs, but lists, figures, and other elements are interspersed. The

most fundamental question in structural markup is, "what is it?" What

structural significance does it have? Is it a filename, or a paragraph, or a

list item? Is it a chapter title, or a person, place, or thing?

Presentational

This is a typeset page. The page begins with a centered title in 18 point

ITC Garamond small caps. The author's name appears below the title in

italics, also centered. Following the author's name is 40 points of white

space followed by the abstract, also set in italics and with the bold,

centered title "Abstract." The body of the article appears in two columns

below the abstract. It is introduced by a heading in 15 point Franklin

Gothic Book Compressed. Most of the article is comprised of paragraphs

set in 9/12 ITC Garamond Light. The main text wraps around other

elements that appear interspersed in the text.The most fundamental

question in presentation markup is, "what does it look like?" Is it green,

or bold, or does it blink? Does it move, is it in a box, does it stand out, or

is it hard to see?

Both of these answers are correct and useful.

The structural view of a document is useful because it provides us with

context. Using the structural view, you can answer questions like "where is the

 159

section on font styles?" or build a table of contents with first- and second-level

section headings, or identify the list of authors in a journal.

The presentation view is useful because we have expectations about how

information will be presented. We expect books, journals, marketing

information, advertisements, annual reports, and technical bulletins to look

different (even when they have similar structure). In addition, many institutions

have a distinctive look and feel that they expect to appear in all their published

documents.

HTML is the Structure

The problem is that HTML, the primary markup language used to code

documents on the World Wide Web, is really only useful for expressing the

structure of a document.

It is possible to exert some control over the presentation, by employing

tables and a variety of other tricks, but doing so blurs the structural view of the

document. Adding new presentational tags to HTML isn't going to help, either.

Presentational tags further blur the underlying structure of the document and

could lead rapidly to multiple, incompatible HTML variants.

Style Sheets are the Presentation

Style sheets, which should become commonplace on the Web over the

next few months, provide a means of associating presentational information

with the structural elements of a document in a way that does not corrupt the

underlying structure of the document.

A style sheet is a set of guidelines for the browser indicating how the various

elements of a document should be presented. For example, the following set of

instructions constitute a style sheet for web documents:

• The document background should be blue.

• Top-level headings should be in 20 point Bold Arial (or Helvetica, or at

least a sans-serif face).

• Body text should be 10 point Times Roman. Body text should be white;

links should be light red; visited links should be yellow.

• Block quotations should be set in 8 point Times Italic. The body text

should be black and the background white.

 160

• Warnings should be indented on both sides and set in yellow.

• Itemized lists should use a fancy bullet.

9.3.Inline Style

There are many ways to declare styles for a document. In Inline Style

individual element’s style is declared using the style attribute.

Example

<html>

<head>

<title> XML Inline Style</title>

</head>

<body>

<p> Communication Address </p>

<p style =”font-size: 20pt”> School of Distance Education</p>

<p style = font-size:20pt; color: #0000ff”> Bharathiar University </p>

</body>

</html>

Output:

 161

9.4.Creating Style Sheets with the Style Element

 If we declare styles in the head of the document. These styles may be

applied to the entire document.

Example

<html>

<head>

<title> XML Style Element </title>

<style type = "text/css">

em { background-color : #8000ff; color:white }

h1 { font-family: arial, sans-serif }

p { font-size : 20pt }

.special { color: blue }

</style>

</head>

<body>

<h1> Communication Address </h1>

<p> School of Distance Education</p>

<p class = "special"> Bharathiar University </p>

</body>

</html>

Output :

 162

9.5. Conflicting Styles

 CSS style sheets are cascading because styles may defined by user, an

author and a user agent. Styles defined by authors take precedence over styles

defined by the user, and styles defined by the user take precedence over styles

defined by the user agent. Styles defined for parent and ancestor elements are

also inherited by child and descendant elements.

Example

<html>

<head>

<title> XML More Style Element </title>

<style type = "text/css">

a.nodec { text-decoration: none }

a:hover { text-decoration : underline; color: red; background-color :

#ccffcc }

li em { color: red; font-weight;bold }

ul { margin-left: 75px }

 163

ul ul { text-decoration : underline; margin-left: 15px }

</style>

</head>

<body>

<h1> Shopping list for Monday:</h1>

Milk

Bread

 White bread

 Rye bread

 Whole wheat bread

Rice

Potatoes

pizza with mushrooms

<p> Go to the Grocery store

 </p>

</body>

</html>

Output :

 164

9.6.Linking External Style Sheets

 Style sheets are an efficient way to give a document a uniform theme.

With external linking, you can give your whole web site a uniform look –

separate pages on your site can all use the same style sheet, and you only need

to modify only a single file to make changes to styles across your whole web

site.

Example

File name styles.css

a.nodec { text-decoration: none }

a:hover { text-decoration : underline; color: red; background-color :

#ccffcc }

li em { color: red; font-weight;bold }

ul { margin-left: 75px }

ul ul { text-decoration : underline; margin-left: 15px }

 165

file name : css4.htm

<html>

<head>

<title> XML Importing style sheet </title>

<link rel = "stylesheet" type = "text/css" href = "styles.css">

</head>

<body>

<h1> Shopping list for Monday:</h1>

Milk

Bread

 White bread

 Rye bread

 Whole wheat bread

Rice

Potatoes

pizza with mushrooms

<p> Go to the Grocery store

 </p>

</body>

</html>

Output :

 166

9.7. Positioning element

 Controlling the positioning of elements in an HTML document was

difficult; positioning was basically up to the browser. CSS introduces the

position property and a capability called absolute positioning, which gives

authors greater control over how documents are displayed.

Example : Absolute positioning

<html>

<head>

<title> XML Absolute positioning </title>

</head>

<body>

<p> <img src = "d:/css/slash.gif" style = "position : absolute; top: 0px;
left: 0px; z-index: 1" alt = "First positioned image"></p>

<p> <style = "position : absolute; top: 500px; left: 500px; z-index: 3; font-
size: 20pt;"> Positioned Text</p>

<p> <img src = "d:/css/hood.gif" style = "position : absolute; top: 300px;
left: 400px; z-index: 2" alt = "Second positioned image"></p>

</body>

</html>

 167

Output

Relative Positioning

<html>

<head>

<title> XML Relative positioning </title>

<style type = "text/css">

p { font-size: 1.3em; font-family : verdana, arial, sans-serif }

span { color: red; font-size : .6em; height : 1em }

.super { position: relative; top: -1ex }

.sub { position : relative; bottom : -1ex }

.shiftleft { position: relative; left: -1ex}

.shiftright { position: relative; right: -1ex }

</style>

</head>

<body>

 168

<p> The text at the end of this sentence is

in superscript. </p>

<p> The text at the end of this sentence is in

subscript. </p>

<p> The text at the end of this sentence

is shifted left. </p>

<p> The text at the end of this sentence

is shifted right. </p>

</body>

</html>

Output :

9.8 Back ground

 CSS also gives control over the backgrounds of elements. You can also

add background images to your documents using CSS.

Example

<html>

<head>

<title> XML - Backgrounf Image </title>

 169

<style type = "text/css">

body { background-image : url(slash.gif);

 background-position : bottom right;

 background-repeat : no-repeat;

 background-attachment: fixed; }

 { font-size: 18pt;

 color: #aa5588;

 text-indent; 1em;

 font-family: arial, sans-serif;}

.dark { font-weight : bold}

</style>

</head>

<body>

<p> Bharathiar University Computer

Science and Engineering . </p>

</body>

</html>

Output :

 170

9.9 Element Dimension

The dimension of each element on the page can be specified using CSS.

Example :

<html>

<head>

<title> XML - Box Dimension </title>

<style type = "text/css">

div { background-color: #ffccff; margin-bottom : .5em }

</style>

</head>

<body>

<div style = "width: 20%"> Bharathiar University </div>

<div style = width: 80%; text-align: center"> School of Computer Science

and Engineering. </div>

<div style = width: 20%; height : 30% ; overflow: scroll"> The Director,

School of Distance Education, Bharathiar University, Coimbatore - 641

046.</div>

</body>

</html>

 171

9.10. Text Flow and the Box Model

A browser normally places text ans elements on screen in the order they

appear in the HTML document. However, as we saw with absolute positioning,

it is possible to remove elements from the normal flow of text. Floating allows

you to move an element to one side of the screen – other content in the

document will then flow around the floated element. In addition, each block-

level element has a box drawn around it, known as the box model – the

properties of this box are easily adjusted. In addition to the text, whole element

can be floated to left or right of a document.

Example

<html>

<head>

<title> XML Flowing text Around Floating Elements </title>

<style type = “text/css”>

 div { background-color: #ffccff; margin-bottom: .5em; font-size:

1.5.em;Width: 50% }

 p { text-align:justify; }

</style>

</head>

<body>

<div style = “text-align:center”>XML programming.</div>

<div style = “float:right; margin: .5em; text-align:right”> Cascading Style

Sheets</div>

<p> A browser normally places text ans elements on screen in the order

they appear in the HTML document. However, as we saw with absolute

positioning, it is possible to remove elements from the normal flow of

text. Floating allows you to move an element to one side of the screen –

other content in the document will then flow around the floated element.

</p>

 172

<div style = “float:right; padding:.5em; text-align:right”> Floating

Elements </div>

<p>In addition, each block-level element has a box drawn around it,

known as the box model – the properties of this box are easily adjusted.

In addition to the text, whole element can be floated to left or right of a

document. </p>

</body>

</html>

Example 2:

<head>

<title> XML – Borders</title>

<style type = “text/css”>

Body { background-color:#ccffcc }

Div { text-align:center; martgin-bottomn: 1em; padding : .5em }

.thick { border-width: thick }

.medium { border-width: medium }

.thin { border-width: thin }

.groove { border-style: groove }

.inset { border-style: inset }

.outset { border-outset: outset }

.red { border-color:red}

.blue { border-color:blue}

</style>

</head>

<body>

<div class =”thick groove”>This text has border</div>

<div class =”medium groove”>This text has border</div>

<div class =”thin groove”>This text has border</div>

<p class = “thin red inset”> A thin red line … </p>

<p class = “medium blue outset”> and a thicker blue line </p>

</body>

</html>

 173

9.11. User Style Sheets

Users have the option to define their own user style sheets to format

pages based on their own preference – for eg. Visually impared people might

want to increase the text size on all pages they view.

Example : user.html

</head>

<title> XML user style </title>

<style type = "text/css">

.note { font-size : 1.5em }

</style>

</head>

<body>

<p> Thanks for visiting my web page. I hope you enjoy it. </p>

<p class = "note"> Please note: This site will be moving soon. Please

check the periodically for updates </p>

</body>

</html>

File Name : userstyle.htm

body { font-size:20pt; background-color: #ccffcc }

a { color : red }

In this case the user have to modify the browser options

 174

 175

Output :

9.12. Let us Sum Up

HTML has been primarily concerned with representing the structure of

documents online. By this, I mean that it allows the author to identify headings,

paragraphs, lists, etc., but it does not provide (very many) facilities for

specifying how the information can be presented (fonts, colors, spacing, text

flow, etc.).

HTML is the Structure

The problem is that HTML, the primary markup language used to code

documents on the World Wide Web, is really only useful for expressing the

structure of a document.

It is possible to exert some control over the presentation, by employing

tables and a variety of other tricks, but doing so blurs the structural view of the

document. Adding new presentational tags to HTML isn't going to help, either.

 176

Presentational tags further blur the underlying structure of the document and

could lead rapidly to multiple, incompatible HTML variants.

Style Sheets are the Presentation

Style sheets, which should become commonplace on the Web over the

next few months, provide a means of associating presentational information

with the structural elements of a document in a way that does not corrupt the

underlying structure of the document.

A style sheet is a set of guidelines for the browser indicating how the various

elements of a document should be presented. For example, the following set of

instructions constitute a style sheet for web documents:

• The document background should be blue.

• Top-level headings should be in 20 point Bold Arial (or Helvetica, or at

least a sans-serif face).

• Body text should be 10 point Times Roman. Body text should be white;

links should be light red; visited links should be yellow.

• Block quotations should be set in 8 point Times Italic. The body text

should be black and the background white.

• Warnings should be indented on both sides and set in yellow.

• Itemized lists should use a fancy bullet.

Inline Style

There are many ways to declare styles for a document. In Inline Style

individual element’s style is declared using the style attribute.

Creating Style Sheets with the Style Element

 If we declare styles in the head of the document. These styles may be

applied to the entire document.

Conflicting Styles

 CSS style sheets are cascading because styles may defined by user, an

author and a user agent. Styles defined by authors take precedence over styles

defined by the user, and styles defined by the user take precedence over styles

defined by the user agent. Styles defined for parent and ancestor elements are

also inherited by child and descendant elements.

 177

Linking External Style Sheets

 Style sheets are an efficient way to give a document a uniform theme.

With external linking, you can give your whole web site a uniform look –

separate pages on your site can all use the same style sheet, and you only need

to modify only a single file to make changes to styles across your whole web

site.

Positioning element

 Controlling the positioning of elements in an HTML document was

difficult; positioning was basically up to the browser. CSS introduces the

position property and a capability called absolute positioning, which

gives authors greater control over how documents are displayed.

Back ground

 CSS also gives control over the backgrounds of elements. You can

also add background images to your documents using CSS.

Element Dimension

The dimension of each element on the page can be specified using CSS.

Text Flow and the Box Model

A browser normally places text ans elements on screen in the order they

appear in the HTML document. However, as we saw with absolute positioning,

it is possible to remove elements from the normal flow of text. Floating allows

you to move an element to one side of the screen – other content in the

document will then flow around the floated element. In addition, each block-

level element has a box drawn around it, known as the box model – the

properties of this box are easily adjusted. In addition to the text, whole element

can be floated to left or right of a document.

User Style Sheets

Users have the option to define their own user style sheets to format

pages based on their own preference – for eg. Visually impared people might

want to increase the text size on all pages they view.

 178

9.13. Lesson end Activities

 1. What is the need for CSS?

 2. Write a CSS program for user style.

9.14. Check your Progress

 1. Write a CSS program for Element dimension.

 2. Write a CSS program for linking external style sheets.

9.15. Reference

 1. XML How to Program , deitel, Nieto, Lin and Sadhu, Pearson

Education,2004

 179

Lesson 10

Dynamic HTML: Object Model and Collections

Contents

10.0 Aim and Objective

10.1 Introduction

10.2. Collection all and Children

10.3. Dynamic Style and Positioning

10.4. Cross-frame Referencing

10.5. Navigator Object

10.6. Let us Sum Up

10.7. Lesson end Activities

10.8. Check your Progress

10.9. Reference

10.0 Aim and Objective

• To use the Dynamic HTML – Object Model and Collection

• To understand DHTML object hierarchy

• To use all and children collection

• To use dynamic styles and dynamic positioning

• To use frames collection

• To use the navigator object

10.1. Introduction

The object model gives access to all elements of a Web page, whose

properties and attributes can thus be retrieved or modified by scripting. The

value of the id attribute of an element becomes the name of the object

representing that element. The various HTML attributes of the element become

properties of this object (which can be modified).

 180

For example, the value of the innerText property of a p element is the text

within that element. So, if we have a P element with id pText, we can

dynamically change the rendering of this element with, e.g.,

pText.innerText = “Good bye!”;

 This is dynamic content.

In the following example, the function (not the window method) alert is

used to pop up an alert box.

Example: 1

<html>

<head>

<title>object model</title>

<script type = "text/javascript">

function start()

{

alert(pText.innerText);

pText.innerText = "Good bye!";

}

</script>

</head>

<body onload = "start()">

<p id = "pText">hello!</p>

</body>

</html>

Output :

 181

 182

10.2. Collection all and children

A collection is an array of related objects on a page. The all collection of

an element (syntactically a property) is a collection of all the elements in it in

order of appearance. This gives us reference even to elements that lack ID

attributes. Like all collections, it has a length property.

For example,

document.all[i] references the ith element in the document.

The innerHTML property of a p element is like the innerText property but

may contain HTML formatting. The tagName property of an element is the name

of the HTML element.

Example: 2

<html>

<!-- Using the all collection -->

<head>

<title>Object Model</title>

<script type = "text/javascript">

var elements = "";

function start()

{

for (var loop = 0;

loop < document.all.length; ++loop)

elements += "
" +

document.all[loop].tagName;

pText.innerHTML += elements;

}

</script>

</head>

<body onload = "start()">

<p id = "pText">Elements on this Web page:</p>

 183

</body>

</html>

Output :

Note that the tagName property of a comment is !.

The children collection for an object is like the all collection but contains

only the next level down in the hierarchy. For example, an HTML element has a

head and a body child. In the following example, function child(object) does a

preorder traversal of the part of the object hierarchy rooted at object. For every

object with children, it appends on to global variable elements

The script adds ul and li tags to display the elements in a hierarchical

manner on the page. , tags represent the name of the HTML element

represented by the object, ,tag represent fsimilar information for the

children (iteratively) and more distant descendants (recursively) of the object,

and f.

The body tag is

<body onload = “child(document.all[1]);

myDisplay.outerHTML += elements;”>

 184

When the page is loaded, this calls child, passing it the second object in

the hierarchy.

(The first element is the comment at the top of the file.)

When control returns from the call, the string in global variable elements

(containing the hierarchical description of the obects) is appended to the value

of the outerHTML property of P element myDisplay. Property outerHTML is like

innerHTML but includes the enclosing tags.

Example: 3

<!-- The children collection -->

<head>

<title>Object Model</title>

<script type = "text/javascript">

var elements = "";

function child(object)

{

var loop = 0;

elements += "" + object.tagName + "";

for(loop = 0; loop < object.children.length;

loop++)

if (object.children[loop].children.length)

child(object.children[loop]);

else

elements += "" +

object.children[loop].tagName

+ "";

elements += " ";

}

</script>

</head>

 185

<body onload = "child(document.all[1]);

myDisplay.outerHTML += elements;">

<p>Welcome to our Web page!</p>

<p id = "myDisplay">

Elements on this Web page:

</p>

</body>

</html>

Output :

10.3. Dynamic Styles and Positioning

We can change an element’s style dynamically. Most HTML elements

have a style object as a property. The names of the properties of this object

used in JavaScript are generally their HTML names modified to avoid the “-“

(seen as subtraction in JavaScript) – e.g., HTML JavaScript background-color

backgroundColor border-width borderWidth font-family fontFamily .

 186

We can make assignments to these properties, dynamically changing the

element’s rendering – e.g.,

document.body.style.fontSize = 16;

Suppose an element’s CSS position property is declared to be either absolute or

relative.Then we can move it by manipulating any of the top, left, right, or

bottom CSS properties of its style object.

 This is dynamic positioning.

Example

Suppose in the body we have

<p id = "pText1"

style = "position: absolute; top: 35">

XXX</p>

and in the script we have

pText1.style.left = 100;

Then the rendering XXX of the pText1 element will be shifted right 100 pixels.

We can also change the class attribute of an element by assigning the

name of a class we have defined to the element’s className property.

Example

Suppose in the body we have <p id = "pText2">CCC</p> in the style

sheet we have defined .bigText { font-size: 2em } and in the script we have

pText2.className = "bigText";

Then the rendering of XXX will be twice as large as the surrounding text.

Example: 4

<html>

<head>

<title>Dynamic Styles</title>

<style type = "text/css">

.bigText { font-size: 2em }

</style>

<script type = "text/javascript">

 187

function start()

{

alert("Go!");

document.body.style.fontSize = 16;

pText1.style.left = 100;

pText2.className = "bigText";

}

</script>

</head>

<body onload = "start()">

<p id = "pText1"

STYLE = "position: absolute; top: 35">

XXX</p>

<p id = "pText2">CCC</p>

</body>

</html>

Output :

 188

The initial rendering is:

After the alert dialog box is dismissed, the rendering is:

To get perceptible dynamic effects, we need some way to control when

element attributes and properties are changed. The setInterval method of the

window object, used as window.setInterval(“function_name()”, msec), invokes

function function_name every msecs milliseconds.

Method setTimeout has the same parameters, but it waits msecs

milliseconds before invoking function_name only once. Both setInterval and

setTimeout return values, which can be assigned to variables. Method

clearInterval takes the value returned by setInterval and terminates the timed

function’s executions.

Method clearTimeout takes the value returned by setTimeout and stops

the timer before it fires (if it hasn’t already).

Example

timer = window.setInterval(“f()”, 1000);

…

window.clearInterval(timer);

Example: 5

<html>

<head>

<title>Dynamic Positioning</title>

 189

<script language = "javascript">

var speed = 5;

var count = 10;

var direction = 1;

var firstLine = "Text growing";

var fontStyle =

["serif", "sans-serif", "monospace"];

var fontStylecount = 0;

function start()

{

window.setInterval("run()", 100);

}

Continued next page

function run()

{

count += speed;

if ((count % 200) == 0) {

speed *= -1;

direction = !direction;

pText.style.color =

(speed < 0) ? "red" : "blue" ;

firstLine =

(speed < 0) ? "Text shrinking" :

"Text growing";

pText.style.fontFamily =

fontStyle[++fontStylecount % 3];

}

 190

pText.style.fontSize = count / 3;

pText.style.left = count;

pText.innerHTML = firstLine +

"
 Font size: " +

count + "px";

}

</script>

</head>

<body onload = "start()">

<p id = "pText"

STYLE = "position: absolute; left: 0;

font-family: serif; color: blue">

Welcome!</p>

</body>

</html>

Output :

10.4. Cross-Frame Referencing

With frame sets, we have the problem of referencing elements that are on

different pages. In a page loaded into a frame, parent references the parent page

(containing a frame element with the current page’s URL as the value of its src

attribute). Then parent frames is the collection of frames in the parent of the

 191

current page. We can reference any page that is the source of some frame in the

parent’s frame set either fby using the ordinal (0 to the number of frames

minus one) of the frame within the frame set as an index or by using the value

of the name attribute of the desired frame as an argument.

Example

parent.frames[1]

parent.frames(“lower”)

This gets us to the document level of the page. If no page is loaded into

the selected frame, the frame’s document object is still defined – designating the

space rendered for that frame in the rendering of the parent.

Example

parent.frames(“lower”).document.writeln(“<p>lower</p>”);

Example: 6

The following is a page that defines a frame set. One of its frames has

“frameset2.html” as the value of its SRC attribute.

<html>

<head>

<title>Frames collection</title>

</HEAD>

<frameset rows = "100, *">

<frame src = "frameset2.html" name = "upper">

<frame src = "" name = "lower">

</frameset>

</html>

The following is file frameset2.html:

<html>

<head>

<title>The frames collection</title>

<script type = "text/javascript">

function start()

 192

{

parent.frames("lower").document.write(

"<p>lower</p>");

}

</script>

</head>

<body onload = "start()">

<p>upper</p>

</body>

</html>

Output

10.5. The Navigator Object

Both Netscape’s Navigator and Microsoft’s Internet Explorer support the

navigator object. It contains information about the browser that’s viewing the

page. Property navigator.appName is “Microsoft Internet Explorer” if the

application is Internet Explorer and “Netscape” if the application is Netscape’s

 193

Navigator. Property navigator.appVersion is a string of various information,

starting with the version number.

For the following example, note that document.location is the URL of the

document being viewed.

Example: 7

<html>

 <head>

 <title> The navigator Object</title>

<script type = "text/javascript">

function start()

{

if (navigator.appName == "Microsoft Internet Explorer") {

if (navigator.appVersion.substring(1,0) >= "4")

document.location = "newIEVersion.html";

else

document.location = "oldIEVersion.html";

}

else

document.location = "NSVersion.html";

}

 </script>

 </head>

 <body onload = “start()”>

 <p> Redirecting your browser to the appropriate page, please wait … </p>

 </body>

 </html>

 194

Output :

10.6 Let us Sum Up

The object model gives access to all elements of a Web page, whose

properties and attributes can thus be retrieved or modified by scripting. The

value of the id attribute of an element becomes the name of the object

representing that element. The various HTML attributes of the element become

properties of this object (which can be modified).

Collection all and children

A collection is an array of related objects on a page. The all collection of

an element (syntactically a property) is a collection of all the elements in it in

order of appearance. This gives us reference even to elements that lack ID

attributes. Like all collections, it has a length property.

The children collection for an object is like the all collection but contains

only the next level down in the hierarchy. For example, an HTML element has a

head and a body child. In the following example, function child(object) does a

preorder traversal of the part of the object hierarchy rooted at object. For every

object with children, it appends on to global variable elements

 195

Dynamic Styles and Positioning

We can change an element’s style dynamically. Most HTML elements

have a style object as a property. The names of the properties of this object

used in JavaScript are generally their HTML names modified to avoid the “-“

(seen as subtraction in JavaScript) – e.g., HTML JavaScript background-color

backgroundColor border-width borderWidth font-family fontFamily .

Cross-Frame Referencing

With frame sets, we have the problem of referencing elements that are on

different pages. In a page loaded into a frame, parent references the parent page

(containing a frame element with the current page’s URL as the value of its src

attribute). Then parent frames is the collection of frames in the parent of the

current page. We can reference any page that is the source of some frame in the

parent’s frame set either fby using the ordinal (0 to the number of frames

minus one) of the frame within the frame set as an index or by using the value

of the name attribute of the desired frame as an argument.

The Navigator Object

Both Netscape’s Navigator and Microsoft’s Internet Explorer support the

navigator object. It contains information about the browser that’s viewing the

page. Property navigator.appName is “Microsoft Internet Explorer” if the

application is Internet Explorer and “Netscape” if the application is Netscape’s

Navigator. Property navigator.appVersion is a string of various information,

starting with the version number.

10.7. Lesson end Activities

1. What is JavaScript Object model?

2. Write a JavaScript programe to positioning the text in the middle of the

browser.

10.8. Check your Progress

 1. Write a JavaScript programe to use more than two frames.

 2. Write a programe to display the version of your browser.

 196

10.9. Reference

1. Internet & World Wide Web, H.M. Deitel, P.J.Deitel and A.B.Goldberg,

Prentice Hall.

2. www.w3c.com

 197

Lesson 11

Dynamic HTML - Event Model

Contents

11.0. Aim and Objective

11.1. Introduction

11.2. Event Onclick

11.3. Event Onload

11.4. Error Handling with Onerror

11.5. Tracking the mouse with Event onmousemove

11.6. Rollover with onmouseover and onmouseout

11.7. Form processing with onfocus and onblur

11.8. Form processing with onsubmit and onrest

11.9. Event Bubbling

11.10. Let us Sum Up

11.11. Lesson End Activities

11.12. Check your Progress

11.13. Reference

11.0. Aim and Objectives

• To understand Event handling using mouse

11.1. Introduction

Dynamic HTML the pages can be controlled by the event models. This

makes the web application more responsive and user friendly and can reduce

server load. With the event model, scripts can respond to a user who is moving

the mouse, scrolling up or down the screen or entering keystrokes. Content

becomes more dynamic while interfaces become more intuitive.

 198

11.2. Event onclick

 One of the most common events is onclick. When the user clicks a

specific item with the mouse, the onclick event fires. Using the for property of

the script element allows you to specify the element to which the script applies.

Example 1

<html>

<head>

<title> DHTML Event Model – onclick</title>

<script type = “text/javascript" for ="para" event = "onclick">

alert(“Hi there”);

</script>

</head>

<body>

<p id = “para”> Click on this text!</p>

<input type = “button” value = “Click Me”

onclick = “alert(“Hi Again”)"/>

</body>

</html>

11.3. Event onload

 The onload event fires whenever an element finishes loading

successfully. Frequently, this event is used in the body element to initiate a

script after the page loads into the client. The script called by the onload event

updates a timer that indicates how many seconds have elapsed since the

document was loaded.

Example 2

<html>

<head>

 199

<title> DHTML Event Model – onload</title>

<script type = “text/javascript” >

Var seconds = 0;

Function startTimer() {

Window.setInterval(“updateTime()”,1000);

}

Function updateTime() {

Seconds++;

soFar.innerText = seconds;

}

</script>

</head>

<body onload = “startTime()”>

<p> Second you have spent viewing this page so far: <strong id =

“soFar”>0</p>

</body>

</html>

11.4. Error Handling with onerror

 The web is a dynamic medium. Sometimes a script refers to objects that

existed at a specified location when the script was written, but the location

changes at a later time, rendering the script invalid. The error dialog presented

by the browser in such a case can be confusing to the user. To prevent this

dialog box from displaying and to handle errors more elegantly, scripts can use

the onerror event to execute specialized error handling code.om displaying and

to handle errors more elegantly, scripts can use the onerror event to execute

specialized error handling code function handleError should execute when an

onerror occurs in the window object. The following example misspelled function

name alrrt create an error and informed by the function handleError.

 200

Example 3

<html>

<head>

<title> DHTML Event Model – onerror</title>

<script type = “text/javascript”>

Window.onerror = handleError;

Function doThis() {

 Alrrt(“Hi”);

}

Function handleError (errType, errURL, errLineNum)

{

Window.status = “Error: “+errType + “on line”+ errLineNum;

Return true;

}

</script>

</head>

<body>

<input id = “mybbutton” type = “button” value = “ Click Me” onclick =

“doThis()”/>

</body>

</html>

 The handleError function accepts three parameters from the onerror

event, which is one of the few events that passes parameters to an event

handler. The parameters are the type of error that occurred, the URL of the file

that had the error and the line number on which the error occurred. This

function return true to the event handler to indicate the the error has been

handled. This prevent browser’s default response.

 201

11.5. Tracking the Mouse with Event onmousemove

 Event onmousemove fires repeatedly whenever the user moves over the

Web page.

Example 4

<html>

<head>

<title> DHTML Event Model – onmousemove event </title>

Function updateMouseCoordinates()

{

Coordinates.innerText = event.srcElement.tagName +” (“+event.offsetX +

“,” + evevt.offsetY +”)”;

}

</script>

</head>

<body style = “back-groundcolor:wheat” onmousemove =

“updateMouseCoordinates()”>

(0,0)

<img src = “deitel.gif” style = “position:absolute; top : 100; left:100” alt =

“Deitel”/>

</body>

</html>

 The offsetX and offset properties of the event object give the location of

the mouse cursor relative to the top-left corner of the object on which the event

was triggered. The properties of the event object contain information about any

events that occur on your page and are used to create Web pages that are truly

dynamic and responsive to the user.

11.6. Rollovers with onmouseover and onmouseout

 When the mouse cursor moves over an element, an onmouseout event

occurs for that element. When the mouse cursor leaves the element, an

 202

onmouseout event occurs for that element. If the image is large or the

connection is slow, downloading causes a noticeable delay in the image update.

Example 5

<html>

<head>

<title> DHTML Event Model – onmouseover and onmouseout </title>

captionImage1 = new Image();

captionimage1.src = “caption.gif”;

captionImage2 = new Image();

captionImage2.src = “caption2.gif”;

function mOver()

{

 If (event.srcElement.id == “tableCaption”) {

 Event.srcElement.src = captionImage2.src;

 Return;

}

If (event.srcElement.id)

 Event.srcElement.style.color = event.srcElement.id;

}

function mOut()

{

 If (event.srcElement.id == “tableCaption”) {

 Event.srcElement.src = captionImage1.src;

 Return;

}

If (event.srcElement.id)

 Event.srcElement.innerText = event.srcElement.id;

}

Document.onmouseover = mOver;

 203

Document.onmouseout = mOut;

</script>

</head>

<body style = “background-color:white”>

<h1>Guess the Hex Code’s Actual Color</h1>

<p> Can you tella color from its hexadecimal RGB code value? Look at

the hexcode

Guess the color. To see what color it corresponds to, move the mouse

over the

Hex code. Moving the mouse out will display the color name. </p>

<table style = “width 50%; border-style; groove;

Text-align:center; font-family:monospace;

Font-weight:bold”>

<caption>

</caption>

<tr>

 <td id = “Black”>#000000</td>

 <td id = “Blue”>#0000FF</td>

 <td id = “Magenta”>#FF00FF</td>

 <td id = “Gray”>#808080</td>

</tr>

<tr>

 <td id = “Green”>#008000</td>

 <td id = “Lime”>#00FF00</td>

 <td id = “Maroon”>#800000</td>

 <td id = “Navy”>#000080</td>

</tr>

 204

<tr>

 <td id = “Olive”>#8080000</td>

 <td id = “Purple”>#800080</td>

 <td id = “Red”>#FF0000</td>

 <td id = “Silver”>#C0C0C0</td>

</tr>

 <tr>

 <td id = “Cyan”>#00FFFF</td>

 <td id = “Teal”>#008080</td>

 <td id = “Yellow”>#FFFF00</td>

 <td id = “White”>#FFFFFFFF</td>

</tr>

</table>

</body>

11.7. Form processing with onfocus and onblur

 The onfocus and onblur events are particulary useful when dealing with

form elements that Allows user input. The onfocus event fires when an element

gains and onblur fires when an element loses focus, which occurs when

another control gains the focus.

Example 6

<html>

<head>

<title> DHTML Event Model – onfocus and onblur</title>

<script type = “text/javascript”>

Var helpArray =

[“ Enter your name in this input box,”,

“Enter your email address in this input box”+

“in the format user@domain.”,

]

 205

Function helpText(messageNum)

{

 myForm.helpBox.value = helpArray [messageNum];

}

</script>

</head>

<body>

<form id = “myform” action = “”>

Name : <input type = “text” name = “name” onfucus = “helpText(0)”

onblur = “helpText(6) />

Email : <input type = “text” name = “email” onfocus = “helpText(1)”

onblur = “helpText(6)” />

Click here if you like this site

<input type = “checkbox” name = “like” onfocus = “helpText(2) onblur =

“helpText(6)” />
 <hr/>

Any comments?

<textarea name = “comments “ row = “5” cols = “45” onfocus =

“helpText(3)” onblur = “helptext(6)></textarea>

<input type = “submit” value = “Submit” onfocus = “helpText(4) onblur =

“helpText(6)”/>

<input type = “reset” value = “reset” onfocus = “helpText(5)” onblur =

“helpText(6)” />

<textarea name = “helpBox” style = “position: absolute;

This text area provides context-sensitive help.

</textarea>

</form>

</body>

</html>

 206

11.8. Form processing with onsubmit and onrest

These events fire when a form is submitted or rest, respectively. The

function form submit executes in response to the user submitting the form.

Example 7

<html>

<head>

<title> DHTML Event Model – onfocus and onblur</title>

<script type = “text/javascript”>

Var helpArray =

[“ Enter your name in this input box,”,

“Enter your email address in this input box”+

“in the format user@domain.”,

]

Function helpText(messageNum)

{

 myForm.helpBox.value = helpArray [messageNum];

}

Function formSubmit() {

 Window.event.returnValue = false;

 If(confirm(“Are you sure want to submit?”))

 Window.event.returnValue = true;

}

Function formReset() {

 Window.event.returnValue = false;

 If(confirm(“Are you sure want to reset?”))

 Window.event.returnValue = true;

}

</script>

 207

</head>

<body>

<form id = “myform” onsubmit = “formSubmit()” onrest = “formReset()”

action = “”>

Name : <input type = “text” name = “name” onfucus = “helpText(0)”

onblur = “helpText(6) />

Email : <input type = “text” name = “email” onfocus = “helpText(1)”

onblur = “helpText(6)” />

Click here if you like this site

<input type = “checkbox” name = “like” onfocus = “helpText(2) onblur =

“helpText(6)” />
 <hr/>

Any comments?

<textarea name = “comments “ row = “5” cols = “45” onfocus =

“helpText(3)” onblur = “helptext(6)></textarea>

<input type = “submit” value = “Submit” onfocus = “helpText(4) onblur =

“helpText(6)”/>

<input type = “reset” value = “reset” onfocus = “helpText(5)” onblur =

“helpText(6)” />

<textarea name = “helpBox” style = “position: absolute; right: 0 top:0

“readonly = “true”.rows = “4” cols = “45”>

This text area provides context-sensitive help.

</textarea>

</form>

</body>

</html>

11.9. Event Bubbling

 Event bubbling is the process whereby events fired in child elements

“bubble” up to their parent elements. When a child event is fired, the event is

first delivered to the child’s event handler, then to the parent’s event handler.

This might result in event handling that was not intended. If you intend to

 208

handle an event in a child element, you might need to cancel the bubbling of

the event in the child element’s event-handling code by using the cancelBubble

property of the event object.

Example 8

<html>

<head>

<title> DHTML Event Model – Event Bubbling</title>

<script type = “text/javascript”>

Function documentClick()

{

 Alert(“Youclicked in the document”);

}

Function paragraphClick(value)

{

 Alert(“You clicked the text”);

 If (value)

 Event.cancelBubble = true;

}

 Document.onClick = documentClick;

</script>

</head>

<body>

<p onclick = “paragraphClick(false)”> Click here</p>

<p onclick = “paragraphClick(true) “> Click here, too</p>

</body>

</html>

 209

11.10. Let us Sum Up

 Dynamic HTML the pages can be controlled by the event models. This

makes the web application more responsive and user friendly and can reduce

server load. With the event model, scripts can respond to a user who is moving

the mouse, scrolling up or down the screen or entering keystrokes. Content

becomes more dynamic while interfaces become more intuitive.

Event onclick

 One of the most common events is onclick. When the user clicks a

specific item with the mouse, the onclick event fires. Using the for property of

the script element allows you to specify the element to which the script applies.

Event on load

 The onload event fires whenever an element finishes loading

successfully. Frequently, this event is used in the body element to initiate a

script after the page loads into the client. The script called by the onload event

updates a timer that indicates how many seconds have elapsed since the

document was loaded.

Error Handling with onerror

 The web is a dynamic medium. Sometimes a script refers to objects that

existed at a specified location when the script was written, but the location

changes at a later time, rendering the script invalid. The error dialog presented

by the browser in such a case can be confusing to the user. To prevent this

dialog box from displaying and to handle errors more elegantly, scripts can use

the onerror event to execute specialized error handling code.om displaying and

to handle errors more elegantly, scripts can use the onerror event to execute

specialized error handling code function handleError should execute when an

onerror occurs in the window object. The following example misspelled function

name alrrt create an error and informed by the function handleError.

Tracking the Mouse with Event onmousemove

 Event onmousemove fires repeatedly whenever the user moves over the

Web page.

 210

Rollovers with onmouseover and onmouseout

 When the mouse cursor moves over an element, an onmouseout event

occurs for that element. When the mouse cursor leaves the element, an

onmouseout event occurs for that element. If the image is large or the

connection is slow, downloading causes a noticeable delay in the image update.

Form processing with onfocus and onblur

 The onfocus and onblur events are particulary useful when dealing with

form elements that Allows user input. The onfocus event fires when an element

gains and onblur fires when an element loses focus, which occurs when

another control gains the focus.

Form processing with onsubmit and onrest

These events fire when a form is submitted or rest, respectively. The

function form submit executes in response to the user submitting the form.

Event Bubbling

 Event bubbling is the process whereby events fired in child elements

“bubble” up to their parent elements. When a child event is fired, the event is

first delivered to the child’s event handler, then to the parent’s event handler.

This might result in event handling that was not intended. If you intend to

handle an event in a child element, you might need to cancel the bubbling of

the event in the child element’s event-handling code by using the cancelBubble

property of the event object.

11. 11. Lesson End Activities

 1. What is the different about onClick and onload event?

 2. How to track the mouse position?

11.12. Check your progress

1. Write a Javascript program to print a message for mouse over an image.

2. Write a JavScript program for form processing with onsubmit and onrest.

11.13. Reference

1. Internet & World Wide Web, H.M. Deitel, P.J.Deitel and A.B.Goldberg,

Prentice Hall.

2. www.w3c.com

 211

Lesson 12

Java Script - Filters and Transitions

Contents

12.0.Aim and Objective

12.1. Introduction

12.2. Flip Filters

12.3.Chroma filter

12.4.Image masks

12.5.Image filters

12.6.Invert Filter

12.7.Gray Filter

12.8.Adding Shadows to text

12.9.Creating gradients with alpha

12.10.Making Text glow

12.11.Creating Motion with blur

12.12.Wave Filter

12.13. Let us Sum UP

12.14. Lesson End Activities

12.15. Check your progress

12.16. Reference

12.0. Aim and Objective

• To use filters to achieve special effects

• To be able to create animated visual transitions

• To be able to modify filters dynamically, using DHTML

12.1.Introduction

Filters and transitions are specified with the CSS filter property. Applying

filters to text and images causes changes that are persistent. Transitions are

temporary; applying a transition allows you to transfer from one page to

another with a pleasant visual effect, such as random dissolve. Filter and

Transistion do not add content to your pages, rather, they present existing

 212

content in an engaging manner to capture the user’s attention. Each of the

visual effects achievable with filters and transitions is programmable, so these

effects can be adjusted dynamically by programs that respond to user-initiated

events, such as mouse click and keystrokes.

The images used in this chapter are :

Flood.jpg

Sunface.gif

Slash.gif

 213

12.2. Flip Filters : flipv and fliph

 The flipv and fliph filters mirror text or images vertically and horizontally.

The following example demonstrates this.

Example

<html>

<head>

<title> Flip Filter</title>

<span style="width: 300; height: 50; font-size: 36pt; font-family: Arial

Black; color: red; Filter: FlipV">"SunShine!"

</body>

</html>

Output :

If the filter is fliph, which flips the affected object horizontally and if flipv

then it affected the object vertically.

 214

12.3. Chroma filter

 The Chroma filter applies transparency effect dynamically, without using

a graphics editor to hard-code transparency into the image. From the output of

the following example the transparency of an image, using object model

scripting based on a user selection from a select element.

Example

<html>

<head>

<title> Chroma Filter</title>

<style type =”text/javascript”>

<img src="d:script 26/sunface.gif" style="Filter: Chroma(Color =

#000000)">

"SunShine!" <span style="width: 580; height: 50; font-size: 36pt; font-

family: Arial Black; color: red; Filter: Chroma(Color =

#FF0000)">"SunShine!"

</body>

</html>

Output :

 215

 Each filter has a property named enabled. If this property is set to true,

the filter is applied. If it is set to false, the filter is not applied. Onchange event

fires whenever the value of a form field changes. The expression this.value

represents the currently selected value in the select GUI component, which is

passed to function changeColor.

12.4 mage masks

 Applying the mask filter to an image allows you to create an effect in

which an element’s background is a solid color and its foreground is

transparent, so the image or color behind it shows through. This is known as

an image mask. The following example adds the mask filter to a div element

which overlaps an image. The foreground of the div element is transparent, so

you can see the background image through the letters in the foreground.

Parameters always specified in the format param = value.

Example

<html>

<head>

<title>Mask Filter></title>

<img src="d:script 26/slash.gif" style="FILTER: Chroma(Color = #000000)

Mask(Color=#00FF00)">

"Now, Stop That!."

<span style="width: 357; height: 50; font-size: 18pt; font-family: Arial

Black; color: red; Filter: Mask(Color=#00FF00)">"Now, Stop

That!."

</body>

</html>

Output :

 216

12.5. Image filters : invert, gray and xray

These filters apply simple image effect to image or text. The invert filter

applies a negative image effect – dark areas become light and light areas

become dark. The gray filter applies a grayscale image effect, in which all color

is stripped from the image and all that remains is brightness data. The Xray

filter applies an x-ray effect, which basically is an inversion of the grayscale

effect.

The following example illustrate in detail.

Xray Filter

Example

<html>

<head>

<title> Xray Filter</title>

 "Flood!"

<span style="width: 357; height: 50; font-size: 36pt; font-family: Arial

Black; color: red; Filter: Xray">"Flood!"

 217

</head>

</html>

Output:

12.6. Invert Filter

Example :

<html>

<head>

<title> invert Filter </title>

 "Invert the Flood!"

 <span style="width: 387; height: 50; font-size: 18pt; font-family:

Arial Black; color: red; Filter: Invert">"Invert the Flood!"

</head>

</html>

Output :

 218

12.7 Gray Filter

Example

<html>

<head>

<title> Gray Filter</title>

 "Colorless Flood"

<span style="width: 300; height: 50; font-size: 18pt; font-family: Arial

Black; color: red; Filter: Gray">"Colorless Flood"

</head>

</html>

Output :

 219

12.8. Adding Shadows to text

A simple filter that adds depth to your text is the shadow filter. This filter

create a shadowing effect that gives your text a three-dimensional appearance.

Example

<html>

<head>

<title> Shadow Filter </title>

 <img src="d:script 26/slash.gif" style="FILTER: Chroma(Color = #000000)

Shadow(Color=#00FF00, Direction=225)">

 "Now, Stop That!"

 <span style="width: 357; height: 50; font-size: 18pt; font-family: Arial

Black; color: red; Filter: Shadow(Color=#0000FF, Direction=225)">"Now,

Stop That!"

</head>

</html>

 220

Output :

Property direction of the shadow filter determines in which direction the shadow

effect is applied – this can be set to one of eight direction expressed in

angular notation

0 up

45 above-right

90 right

135 below-right

180 below

225 below-left

270 left

315 above-left

Property color specifies the color of the shadow that is applied to the text.

 221

12.9. Creating gradients with alpha

Alpha filter used to get gradient effect. It also used to transparency

effects notachievable with the chroma filter.

The style property of the filter determines in what opacity style is applied.

Opacity refers to the color saturation of an image. The various style values

create different transitions from opaque to transparent. A style value of 0

applies uniform opacity, a value of 1 applies a linear gradient, a value of 2

applies a circular gradient and a value of 3 applies a rectangular gradient.

The opacity and finishopacity properties are both percentages that

determine at what percent opacity the specified gradient starts and finishes,

respectively. Additional attributes are startX, startY, finishX and finishY. These

specify at what x-y coordinates the gradient starts and finishes in that element.

Example

<html>

<head>

 <img src="d:script 26/sunface.gif" style="Filter: Alpha(Opacity=100,

FinishOpacity=0, Style=2, StartX=20, StartY=40, FinishX=0,

FinishY=0)">

 "SunShine!"

 <span style="width: 357; height: 50; font-size: 36pt; font-family: Arial

Black; color: red; Filter: Alpha(Opacity=100, FinishOpacity=0, Style=1,

StartX=0, StartY=0, FinishX=580, FinishY=0)">"SunShine!"

</head>

</html>

Output :

 222

12.10. Making Text glow

 The glow filter adds an aura of color around text. The color and strength

can both be specified.

12.11. Creating Motion with blur

 The blur filter creates an illusion of motion by blurring text or images in

a certain directions.

Example :

<html>

<head>

<title> Blur Filter </title>

<img src="d:script 26/sunface.gif" style="Filter: Blur(Add = 0, Direction =

225, Strength = 10)">

 "SunShine!"

 <span style="width: 357; height: 50; font-size: 36pt; font-family:

Arial Black; color: red; Filter: Blur(Add = 1, Direction = 225, Strength =

10)">"SunShine!"

 223

</head>

</html>

Output :

12.12. Wave Filter

Example

<html>

<head>

<title> Wave Filter</title>

 <img src="d:script 26/flood.jpg" style="FILTER: Chroma(Color =

#000000) Wave(Add=0, Freq=5, LightStrength=20, Phase=220,

Strength=10)">

 "Flood!"

 <span style="width: 357; height: 50; font-size: 36pt; font-family: Arial

Black; color: red; Filter: Wave(Add=0, Freq=5, LightStrength=20,

Phase=20, Strength=20)">"Flood!"

</head>

</html>

 224

Output:

12.13. Let us Sum UP

Filters and transitions are specified with the CSS filter property. Applying

filters to text and images causes changes that are persistent. Transitions are

temporary; applying a transition allows you to transfer from one page to

another with a pleasant visual effect, such as random dissolve. Filter and

Transistion do not add content to your pages, rather, they present existing

content in an engaging manner to capture the user’s attention. Each of the

visual effects achievable with filters and transitions is programmable, so these

effects can be adjusted dynamically by programs that respond to user-initiated

events, such as mouse click and keystrokes.

Flip Filters : flipv and fliph

 The flipv and fliph filters mirror text or images vertically and horizontally.

Chroma filter

 The Chroma filter applies transparency effect dynamically, without using

a graphics editor to hard-code transparency into the image. From the output of

the following example the transparency of an image, using object model

scripting based on a user selection from a select element.

 225

Image masks

 Applying the mask filter to an image allows you to create an effect in

which an element’s background is a solid color and its foreground is

transparent, so the image or color behind it shows through. This is known as

an image mask. The following example adds the mask filter to a div element

which overlaps an image. The foreground of the div element is transparent, so

you can see the background image through the letters in the foreground.

Parameters always specified in the format param = value.

Image filters : invert, gray and xray

These filters apply simple image effect to image or text. The invert filter

applies a negative image effect – dark areas become light and light areas

become dark. The gray filter applies a grayscale image effect, in which all color

is stripped from the image and all that remains is brightness data. The Xray

filter applies an x-ray effect, which basically is an inversion of the grayscale

effect.

Adding Shadows to text

A simple filter that adds depth to your text is the shadow filter. This filter

create a shadowing effect that gives your text a three-dimensional appearance.

Creating gradients with alpha

Alpha filter used to get gradient effect. It also used to transparency

effects notachievable with the chroma filter.

Making Text glow

 The glow filter adds an aura of color around text. The color and strength

can both be specified.

Creating Motion with blur

 The blur filter creates an illusion of motion by blurring text or images in

a certain directions.

12.14. Lesson end Activities

1. Write a program for wave filter.

2. Write a program for Text glow.

 226

12.15. Check your Progress

1. List all the filters available in JavaScript.

12.16. Reference.

1. Internet & World Wide Web, H.M. Deitel, P.J.Deitel and A.B.Goldberg,

Prentice Hall.

 2. www.w3c.com

 227

Lesson 13

VBScript - I

Content

13.0. Aim and Objective

13.1. Introduction

13.2. Statements and Expressions

13.3. Variables & Procedure

13.4. Data Types

13.5. Operators

13.6. Control Structure

13.7. Arrays

13.8. Let us Sum Up

13.9. Lesson End Activities

13.10. Check Your Progress

13.11. Reference

13.0. Aim and Objective

• The differences between Visual Basic and VBScript

• The syntax of the VBScript language

• Program flow in VBScript

• Interaction between the program and the user in VBScript

13.1. Introduction

VBScript is derived from Visual Basic, which has origins in GW-Basic

that was shipped with all early versions of MS-DOS. GW-Basic evolved from the

original Dartmouth BASIC (Beginners All-purpose Symbolic Instruction Code)

developed in the 1960's.

 228

VBScript is an interpreted language - sort of. Like many other

contemporary "interpreted" languages.

VBScript is a scripting language for HTML pages on the World Wide Web

and corporate intranets. If you know Visual Basic, you'll probably not have any

trouble at all with VBScript.

13.2. Statements and Expressions

An expression is a chunk of VBScript syntax in the form of a calculation

that uses operators to combine numbers, strings, and variables and evaluate

them to some value. An expression can be used any place where a variable is

used.

In VBScript statements are terminated at the end of a line when you hit

the Enter key and your text editor inserts the Carriage Return (ASCII 13) and

LineFeed (ASCII 10) characters. If you have a statement that is too long to fit on

one line without scrolling off the right edge of the screen you can use the

underscore as a line continuation character. For line continuation the

underscore must be the very last character on the line without even a space

following it, and it must be between keywords, variable names, operators, and

quoted strings. Multiple statements separated by a colon can be included in a

single line.

13.3. Variables and Procedures

Unlike languages that define types and sizes of numbers (integers,

floating point, etc.), characters, strings, etc. as distinct data types, VBScript

treats all data as one of two fundamental types: numbers or strings. Most of the

time VBScript figures out how to make the conversions based on context. When

you need explicit control over data types VBScript has conversion functions and

data type functions that return the type of variables and expressions.

Variables are used to store data items that can change (e.g. "vary")

during the lifetime of a program. All variables have one variable type called

variant. The data is actually stored in numbered memory addresses in the

computer's Random Access Memory (RAM), however variables in high-level

languages like VBScript provide convenient names for the memory addresses.

 229

Variables and memory addresses are similar to a house where you deliver the

newspaper: it might have a lot number, plot number, section number, and

township number for the official county engineer records; but you know it as

"123 Main St.," "Mr. Smith's house," or maybe "the big red house on the corner

with the mean dog."

Variables in VBScript do not have to be "declared" before they are used,

they spring to life when you first use them. This might sound convenient, but it

is now generally considered a bad idea, although it persists for historical

reasons and backward compatibility with earlier versions of Basic. VBScript

supports the Dim statement, however, that allows you to explicitly declare the

variables you intend to use. The Option Explicit is also supported, which

forces you to use the Dim statement for all variables. When used, Option

Explicit must be the first executable statement in the program.

VBScript variable names are not case sensitive. The variables TotalPrice,

totalprice, and TOTALPRICE all refer to the same variable. Variable names

can be made up of letters, digits, and the underscore character only (no

spaces); must begin with a letter; and cannot be the same as VBScript built-in

key words (such as For, While, etc.).

If variables are used to store data items that can change then it should

follow that constants are used to store data items that cannot change. VBScript

supports the Const key word to declare symbolic constants. A common naming

convention borrowed from languages like C and Java (which are case sensitive)

is to use all upper case for symbolic Constants. Remember, however, that

VBScript is not case sensitive.

You should understand some simple concepts before you begin to

program. Among these concepts are variables and procedures.

A program is made up of one or more procedures. A procedure is an

instruction block in VBScript. Regular procedures, or Subs, simply act on data,

but a special procedure called a Function returns a value to the procedure that

called it. Be aware that all your scripts will be made up of procedures and

Function blocks.

 230

VBScript programs will begin with a <SCRIPT> tag and end with a

</Script> tag. Your procedures and Functions will work the same way. The

procedure is created and it is ended. Your program code goes in between.

The first thing you'll notice in the VBScript code block is the

<SCRIPT LANGUAGE="VBS">

 Keep in mind that you must close out your script code block with a

</SCRIPT> tag. If you don't add this tag, your script usually won't run and you

won't know what's going on because you aren't going to see any error messages.

Errors like this are tough to track down because if your code block is large, you

might start hacking away at perfectly good code to see if you can figure out

what's wrong. An error like this can waste a lot of time because nothing you try

works.

 The next tag that you should get used to adding to a script block is the

comment tag. You won't run into a problem with most browsers if you don't add

this tag, but it's a good idea to get used to adding it anyway. If nothing else, this

tag helps you to see your scripting blocks more easily in your HTML documents.

Like the <script> tag, the comment tag should have a closing tag, although not

having a closing tag will not affect your script in a browser that recognizes the

<SCRIPT> tag.

Procedures make up most of the rest of a script code block. They have

opening and closing lines and are accessible from one another. The first

procedure run in a script depends on what events take place within the HTML

page. An event is usually an action taken by a user, such as clicking on a

button, but other events can also be triggered within an HTML page. Other

possible events include timer events, mouse movement, and messages sent

from controls.

To review, an HTML script is enclosed by the <SCRIPT> </SCRIPT> tag

pair. The LANGUAGE="VBS" attribute sets the scripting language to VBScript.

The VBScript script code should be written inside a comment tag, <!-- -->.

Procedures are blocks of code within the script that make up the program.

 231

13.4. Data Types

A variable is a name that represents the contents of some space in

memory. Thinking of a variable in terms of memory space will help you to

understand an important concept in programming: data types.

All variables in VBScript are of the type variant. A variant is a variable

that is simply the name for a piece of data. The variant type doesn't differentiate

between types of data until the time comes to process that data. This means

that a variable can represent literally any value or type of value.

Subtypes of Variant Types

The variant type has a number of subtypes. Let's go through each of the

subtypes and discuss how a variable of any given subtype will take up space in

memory.

Boolean

One of the most basic data types in programming is the Boolean

data type. This subtype in VBScript can have a value of either true or

false. The Boolean type takes up very little space in memory.

Byte

The byte subtype can be a whole, positive number in the range of

0 to 255. Like the Boolean subtype, the byte subtype takes up very little

space in memory.

Integer

The integer subtype takes up 2 bytes in memory and can be an

integer value in the range of -32,768 to 32,767. An extra byte of storage

makes a big difference in the value that a variable can hold.

Long

The long variable subtype is 4 bytes in size and can be a whole

number in the range of -2,137,483,648 to 2,137,483,647.

Single

The single subtype contains a single-precision, floating-point

number. Precision refers to the number of bytes of fractional value

storage allotted to the variable. A single-precision number allots 2 bytes

 232

for fractional value storage. It takes 4 bytes to store a variable of the

subtype single. The range of values that a single can hold is -

3.402823E38 to -1.401298E-45 for negative values and 1.401298E-45 to

3.402823E38 for positive values.

Double

The double subtype takes up 8 bytes of storage, 4 bytes of which

are reserved for a fractional value. The double subtype is extremely

precise and is usually reserved for advanced mathematical and scientific

operations. It has a range of -1.79769313486232E308 to -

4.94065645841247E-324 for negative values and 4.94065645841247E-

324 to 1.7976931348632E308 for positive values.

String

The string subtype is a group of up to approximately 2 billion

characters. The size of the string variable depends on the length of the

string.

Date

The date subtype is a number that represents a date in the range

of January 1, 100 to December 31, 9999.

Empty

The empty subtype is returned for variants that aren't initialized.

If the variable is a number, the value is 0. If it's a string, the value is "".

Object

The object subtype contains the name of an OLE Automation

object. The object can then be manipulated using the variable.

Error

The error subtype contains an error number. You can use the

generated error number to generate an expanded explanation of the

error.

Using Variables

Now that you know what variables are all about, let's take a look at how

they are used in your VBS scripts.

 233

Declaring Your Variables

Strictly speaking, you don't need to declare your variables in VBScript.

You could simply set the variables that you need on the fly:

MyString="This is my string"

One of problems with setting the value of variables without first declaring

them is that the variables become difficult to track. For example, you set the

value of a variable somewhere in code, but you can't remember where the

variable started. In addition to just being good programming practice, declaring

your variables will make it easier for you to read and maintain your code.

To declare a variable in a VBS script, you use the Dim statement. Dim

stands for dimension:

<SCRIPT LANGUAGE="VBS">

<!--

 Option Explicit

 Dim MyString

 MyString="This is my string"

-->

</SCRIPT>

Notice that in addition to declaring our variable with the Dim statement,

we added the Option Explicit statement to the beginning of the code. Adding

Option Explicit will require you to declare all variables in your script. Using this

statement is completely up to you. If you use Option Explicit but don't declare a

variable, your script will generate an error when run.

You can declare more than one variable at a time. Just use the Dim

statement and put a comma between every new variable name:

<SCRIPT LANGUAGE="VBS">

<!--

 Dim Name, Address, City, State, Zip

-->

</SCRIPT>

 234

Assignment

To assign a value to a variable, place the variable on the left followed by

an equals sign and the value on the right:

Name="Ramesh Thanappan"

Remember that variables in VBScript are variants. VBScript determines

the nature of the variable when you run the script. There are really only two

types of data: strings and numbers. String data is always held in quotation

marks.

Scope

The scope of a variable refers to where in the script the variable is

available for processing. A variable declared inside a procedure is limited in

scope to that procedure. If a variable is declared outside of the procedures in

the script, it is available to all the procedures in the script. Listing 2.3

illustrates the scope of variables in VBS scripts.

Scope of variables in VBS scripts.

<HTML>

 <HEAD>

 <TITLE>VBS Variable Scope</TITLE>

 </HEAD>

<BODY>

<H1>Tester Page for VBS</H1>

<HR COLOR="BLUE">

 <INPUT TYPE="SUBMIT" NAME="Btn1" VALUE="Local

Variable">

 <INPUT TYPE="SUBMIT" NAME="Btn2" VALUE="Script Wide

Variable">

 <INPUT TYPE="SUBMIT" NAME="BTN3" VALUE="Out of Scope">

<SCRIPT LANGUAGE="VBS>

Option Explicit

Dim MyGlobal

 235

MyGlobal="Access Ok"

Sub Btn1_OnClick()

 Dim MyLocal

 MyLocal="Local access Ok!"

 MsgBox MyLocal,0,"Btn1 Clicked"

End Sub

Sub Btn2_OnClick

 MsgBox MyGlobal,0,"Btn2 Clicked"

End Sub

Sub Btn3_OnClick

 MsgBox MyLocal,0,"Btn3 Clicked"

End Sub

-->

</SCRIPT>

</BODY>

</HTML>

If you run the code, you'll see that you can access the local variable by

clicking Btn1. If you click Btn2, you'll access the variable that we declared

globally. Finally, if you click Btn3, you'll get an error because the Btn3_OnClick

procedure tries to access the variable declared in the Btn1_OnClick procedure.

When discussing the scope of a variable, you'll often hear the term

lifetime. Lifetime refers to the amount of time that the variable exists in

memory. At the procedure level, the lifetime of the variable is as long as it takes

to run through the procedure. At the script level, the variable is live for as long

as the script is live. You can extend the lifetime of a procedure-level variable by

declaring the variable as static. A static variable will retain its value between

calls to the procedure. To declare a variable as static, simply use the Static

keyword:

 Static MyVariable

 236

Scalar

The types of variables we have talked about so far have been scalar

variables. A scalar variable has only one value assigned to it at a time.

Depending on the types of programs you write, you'll probably use scalar

variables often in your scripts. When modeling the world, though, you often

need to work with sets of values. To work with these values, you need to use a

different type of variable known as an array.

Naming Conventions

The names that you give variables in VBScript are the same as for any

other named item in a script. Variable names must begin with an alphabetical

character:

' This is Ok

Dim MyVariable

' This is not Ok

Dim @Variable

In addition, variables cannot contain embedded periods and are limited

to 255 characters. Finally, you cannot use the same name for two different

values in the same scope. It's okay to have the same variable name declared in

many different procedures, but the same variable name cannot be declared

globally, and it cannot be declared twice in the same procedure.

When you declare variables, you should consider a few naming

conventions. Table 13.1 lists these conventions.

Table 13.1. Naming conventions in VBScript.

Variable Subtype Prefix

Boolean bln

Byte byt

Date dtm

Double dbl

 237

Error err

Integer int

Long lng

Object obj

Single sng

String str

To use these naming conventions properly, you need to know the

probable data subtype of the variables you declare. To name a variable that you

know will contain a string, use the prefix along with a descriptive name for the

variable:

Dim strName

The same rules follow for values that you know will be of a specified subtype:

Dim dblMiles

Dim blnEmpty

Dim intTotal

Using a convention such as this can save you time in the long run. It's

much easier to see that you're about to make a mistake when you see an

equation like strValue + dblMiles than if you simply saw Value + Miles.

The scope of a variable also has a naming convention. If you have a

script-level variable, you can add an s to the prefix:

Dim sdblMyNumericValue

We'll talk more about coding conventions throughout the book. As new

conventions are introduced, they will be incorporated into the sample code.

Constants

A constant is a named value that doesn't change throughout a script. For

example, the value of the speed of light through room-temperature air at sea

level is about 760 miles per hour. To use this constant in a script, you simply

declare it, assign it, and use it like a variable. To differentiate a value that you

 238

want to be a constant in your script, you should use your own naming

conventions, so that you don't try to reassign the value of the constant that

you've created.

'vbSOL Speed of Light

Dim vbSol

vbSol = 760

Once you set the value of the constant, you can use it in your script as if

it were the actual number. Keep in mind though that constants in VBScript are

essentially just variables that you don't change in your program. Unlike other

languages that allow you to set the value of a constant to static, there's no way

to make a variable in VBScript unchangeable.

13.5 Operators

 VBScript uses many familiar or intuitive operators, such as +, -, *,and /

for addition, subtraction, multiplication, and division. VBScript has an

additional division operator, \, which performs integer division. 8 / 5 is 1.6,

where 8 \ 5 is 1. The exponentiation operator is ^. An operator supported in

virtually all programming languages that may be new is the modulus division

operator. Modulus division returns the remainder rather than the quotient. In

VBScript the modulus operator is MOD.

VBScript has one operator for strings, the "&" (ampersand) operator to

concatenate (combine) strings. VBScirpt supports many additional operations

for strings implemented by functions. For example, you can extract parts of a

string with Mid(); convert strings to upper and lower case with UCase() and

LCase; remove leading white space, trailing white space, or both with LTrim(),

RTrim(), and Trim(); and convert strings to various data types with CInt()

(integer), CDbl() (double precision), CCur() (currency), etc.

Comparisons are tested with the familiar < and > symbols used in

mathematics for "less than" and "greater than". "Less than or equal to" and

"greater than or equal to" use the <= and >= operators respectively. Equality is

tested with the = operator and inequality ("not equal to") is tested with the <>

operator. Note that = is used for both assignment and test for equality; VBScript

knows the difference based on context.

 239

Table 13.2 contains the operators you can use in VBScript programs.

Table 13.2. VBScript operators.

Operator Purpose

+ Addition

And Logical And

& Concantation operator

/ Division

Eqv Logical Equivalence

^ Exponential

Imp Logical Implication

\ Integer Division

Is
Logical Is (Refer to same

object)

Mod Modulus Operator (Remainder)

* Multiplication

- Negation and Subtraction

Not Logical Not

Or Logical Or

Xor Logical Xor

You'll be using some of the logic operators in the next sections. The

mathematical operators are used for math operations and, in some cases,

concatenation. For example:

 240

MyString = "Now is the time" & " for all good men..."

is functionally equivalent to

MyString = "Now is the time" + " for all good men..."

13.6 Control Structure

Decision-Making in Programs

Decision-making in programs is what programming is all about. Keep in

mind that computers aren't really that good at thinking things through. You

have to tell the program what to do every step of the way. Humans use a

method of thinking that has what are known as fuzzy logic characteristics. If

you were to ask more than one person to name the color of a particular scarf,

you might get the answers red, pink, orange, and scarlet. If you ask a computer

to name the color of an element on the screen, you'll get back the exact color

name. Taking it one step further, if you ask the same group of people if the

scarf is red, they all might answer "Yes." If you ask a computer if the screen

element is red, it will return a yes value only if the item is exactly red.

Always keep in mind the limitations of the machine. Write good questions

and you'll get good answers.

If...Then...Else

The If...Then...Else statement is one of the basic capabilities of a

computer language. This statement tests for the truth of a statement and,

depending on the answer, processes information or moves on to another piece

of code. Let's look at an example of an If...Then...Else statement in a program

and then talk about what's happening in the code.

 If...Then...Else in a VBS script.

<HTML>

<HEAD>

<TITLE>Tester Page</TITLE>

</HEAD>

<BODY>

<H1>Tester Page for VBScript</H1>

<HR COLOR="BLUE">

 241

<CENTER>

Question:

Who is buried in Grant's tomb?

<INPUT TYPE="SUBMIT" NAME="Btn1" VALUE="Click to test the code">

<INPUT TYPE="TEXT" NAME="Txt1">

</CENTER>

<SCRIPT LANGUAGE="VBSCRIPT">

<!--

Sub Btn1_OnClick()

Dim Message

If Txt1.Value = "Grant" then

Message="You're right!"

Else

Message="Try again"

End If

MsgBox Message, 0,"Tester Result"

End Sub

-->

</SCRIPT>

</BODY></HTML>

Output :

 242

The example in the above program is simple yet powerful. First of all, it's

our first useful program. We answer a question, and the computer tells us if we

are right or wrong. Immediate feedback and interaction are what it's all about.

Let's break down the Btn1_OnClick procedure to see what's happening up

close.

When Btn1 is clicked, the If...Then...Else statement asks if the value of

the Txt1 text input box is Grant. If the answer to that question is true, the

program sets the value of the variable Message to You're right. If the answer is

false, the value of Message is set to Try again. Notice that there is absolutely no

room for error when answering this question. If the user enters grant, GRANT,

or US Grant, the program will skip to the Else part of the program, and the

message will be "Try again." Later you'll learn how to make If...Then...Else

statements a little more tolerant.

If you have a simple If...Then statement, the statement can be just a single line:

If x=4 then y=12

When the statement takes more than one line, you need to close it off

with an End If statement.

 243

For...Next

The For...Next statement is used to run a block of code statements a

certain number of times:

Dim x

For x = 1 to 10

Edit1.Value = x

Next

In this example, the counter starts at 1 and repeats Edit1.Value = x 10

times. You can also specify the way that the value of x is counted, using the

Step keyword. You can use an If...Then statement to exit the loop, if necessary:

Dim x

For x = 5 To 50 Step 5

Edit1.Value=x

If x > 20 Then Exit For

Next

In this case, the counter starts at 5 and stops at 50 for a total of 10

iterations. The loop is exited after five iterations, because x is greater than 20.

You could also use the Step value to count down, using negative

numbers. Starting with a higher number and counting down to a lower one

would look something like this:

Dim x

For x = 10 to 1 Step -1

Edit1.Value = x

Next

Do...Loop

Another common looping statement is Do...Loop. A Do...Loop statement

is usually better to use than a For...Next and Exit For combination. The

Do...Loop statement allows you to create a loop that runs an infinite number of

times. You need to be careful when using this statement-you don't want to

accidentally get your script into a loop that it can't get out of:

 244

Dim x

x=1

Do Until x = 25

x = x + 1

Loop

In this example, the place where you need to be careful is in Do Until x =

25. If the initial value of x was 30, the code would loop continuously without

the x = 25 value ever being met.

There are two ways to test for a true value in the Do...Loop statement.

You can use the Until keyword to repeat the loop until a condition is true or the

While keyword to repeat while the condition is true:

Dim x

x = 10

Do While x < 100

x = x + 10

Loop

By placing the While or Until keyword after the Loop statement, you can

make sure that the code inside the loop is run at least once:

Dim x

x = 1

Do

x = x + 1

If x > 30 Then Exit Loop

Loop Until x = 30

The code in this Do...Loop block is run at least once before it's ended.

We've also added a safety feature in the form of an Exit Loop command that's

issued if x is found to be greater than 30. If x is greater than 30, there is no

chance that the value will ever be 30.

 245

For Each...Next

The For Each...Next loop is used like the For...Next loop. It is used to test

conditions in collections of objects. Objects have properties that are specified by

keywords that are appended to the object name after a period. If I had an object

with the property of color, you could access that property with MyObject.Color.

Groups of objects are called collections, and you can test each of the objects for

the truth of a statement using For Each...Next:

For Each Car in Lot

 if Car.Color = "Red" then

 MsgBox "Red car!", 0, "Answer"

 End If

Next

In this example, the collection of objects is called Lot, and the objects are

of the type Car. We go through the cars in the lot, and when we get to a red one

we see a message. You'll learn more about objects in Part II of this book.

While...Wend

According to Microsoft, While...Wend is included in VBScript for those

programmers who are familiar with its usage, but it's not well documented.

Microsoft recommends using Do...Loop instead, but let's take a quick look at

the While...Wend statement to become familiar with its usage:

Dim x

x = 1

While x < 10

x = x + 1

Wend

The While...Wend statement repeats until the value of the While portion

of the statement is true.

 246

13.7. Array

An array is like a list. When you go to the grocery store, you often carry a

list of the items that you need to purchase. If you were to assign the list to a

scalar value, it might look something like this:

 MyList = "peas, carrots, corn"

Although it's easy enough to have MyList contain the contents of the list,

it's not very easy to figure out which item is which. That's where an array comes

in. An array lets you easily specify items in the list and retrieve those items

individually. Let's take a look at a simple array.

You declare an array variable in VBScript the same way you do a scalar

variable. The difference is that you specify the number of items in the array:

 Dim MyList(4)

Arrays in VBScript start their count at zero, so an array is declared with

the highest count number in the array. In this case, MyList has a total of five

items.

Looking at following example you can see that we've drawn five buttons

on the page. An array variable, MyList, is declared with five items, and each

item is assigned a different value. In the click event for each button, we attach

the value of an array item to a local scalar variable called Item. We then call a

procedure named ShowMessage, passing Item as a parameter. The

ShowMessage procedure takes the value of Item and plugs it into the MsgBox

function, which brings up the message box containing the value of the

particular array item.

 Shopping list of items.

<HTML>

<HEAD>

 <TITLE>Tester Page</TITLE>

</HEAD>

<BODY>

<H1>Tester Page for VBScript</H1>

 247

<HR COLOR="BLUE">

 <INPUT TYPE="SUBMIT" NAME="Btn1" VALUE="Item 1">

 <INPUT TYPE="SUBMIT" NAME="Btn2" VALUE="Item 2">

 <INPUT TYPE="SUBMIT" NAME="Btn3" VALUE="Item 3">

 <INPUT TYPE="SUBMIT" NAME="Btn4" VALUE="Item 4">

 <INPUT TYPE="SUBMIT" NAME="Btn5" VALUE="Item 5">

<SCRIPT LANGUAGE="VBScript">

<!--

Option Explicit

Dim MyList(4)

MyList(0)="Corn"

MyList(1)="Carrots"

MyList(2)="Peas"

MyList(3)="Chicken"

MyList(4)="Cake"

Sub Btn1_OnClick

 Dim Item

 Item=MyList(0)

 ShowMessage(Item)

End Sub

Sub Btn2_OnClick

 Dim Item

 Item=MyList(1)

 ShowMessage(Item)

End Sub

 248

Sub Btn3_OnClick

 Dim Item

 Item=MyList(2)

 ShowMessage(Item)

End Sub

Sub Btn4_OnClick

 Dim Item

 Item=MyList(3)

 ShowMessage(Item)

End Sub

Sub Btn5_OnClick

 Dim Item

 Item=MyList(4)

 ShowMessage(Item)

End Sub

Sub ShowMessage(SelItem)

 MsgBox SelItem,0,"Item picked"

End Sub

-->

</SCRIPT>

</BODY>

</HTML>

Output :

 249

You can also create multidimensional arrays. A 2-D array is declared like this:

 Dim MyArray(4,9)

This declaration creates a table containing five rows and 10 columns.

You can pull a particular value from the array using MyArray(row,column). The

upper limit for multidimensional arrays is 60 dimensions.

You can declare what are called dynamic arrays that change sizes as the

script is run. To declare a dynamic array, use the Dim or ReDim statement

without adding a size value to the array name:

 Dim MyDynamicArray()

To use this array, you would ReDim the array, adding a size value to the name:

 ReDim MyDynamicArray(13)

You can ReDim an array as many times as needed.

An array is a type of variable that can hold a list of single variables that

are referenced by their numerical index starting at 0. The index, also called a

subscript, is an integer. Because indexing starts at 0 the first element in an

array is ArrayElement(0), the second is ArrayElement(1), etc. The index of the

 250

last element in an array will always be 1 less than the number of elements in

the array and is called the upper bound. The lower bound is always 0. Arrays

must be declared with a Dim statement (whether or not Option Explicit is

used) indicating the upper bound so that the correct amount of memory can be

reserved.

VBScript provides 2 built-in functions for working with arrays.

UBound() returns the upper bound of an array. Since the upper bound of an

array is always one less than the total elements in the array, we can determine

the size.

The Array() function constructs a dynamic array from a list of

expressions which can be assigned to a variable. This is called an "anonymous

array" in some languages because the items in the list are never assigned to

elements in a named array. They exist in a temporary unnamed array in

memory, and that array is immediately assigned to a variable (typically an

element of another array). However, because a reference to the "temporary" list

still exists (in the form of array elements in the variable they were assigned to),

the memory and its values remain accessible.

Arrays stored in elements of other arrays are the basis for more

interesting and useful data structures. In many other languages these are

called structures or records. Consider a database of Employee information

where each employee has an ID, a first and last name, and number of hours

worked.

A fixed-size array’s size does not change during program execution; a

dynamic array’s size can change during execution. A dynamic array is also

called a redimmable array (short for “re-dimensionable” array).

Attempting to access an index that is less than the lower bound or

greater than the upper bound is an error. 32.11

Statement ReDim allocates memory for array dynamic All dynamic

array memory must be allocated via ReDim. Dynamic arrays are more flexible

than fixed-sized arrays, because they can be resized anytime by using ReDim to

accommodate new data.

ReDim dynamic(5)

 251

Dynamic arrays allow the programmer to manage memory more

efficiently than do fixed-size arrays. Resizing dynamic arrays consumes

processor time and can slow a program’s execution speed. Attempting to use

ReDim on a fixed-size array is an error. 12

Using ReDim without Preserve and assuming that the array still contains

previous values is a logic error. Failure to Preserve array data can result in

unexpected loss of data at runtime. Always double check every array ReDim to

determine whether Preserve is needed. 32.5

Arrays can have multiple dimensions. VBScript supports at least 60

array dimensions, but most programmers will need to use only two-dimensional

or three-dimensional arrays.

Referencing a two-dimensional array element u(x, y) incorrectly as u(x)(y)

is an error. A multidimensional array is declared much like a one-dimensional

array. For example, consider the following declarations

Dim b(2, 2), tripleArray(100, 8, 15)

which declare b as a two-dimensional array and tripleArray as a three-

dimensional array.

Attempting to change the total number of array dimensions using ReDim

is an error. Attempting to change the upper bound for any dimension except the

last dimension in a dynamic multidimensional array (when using ReDim

Preserve) is an error. 32.16

Memory allocated for dynamic arrays can be deallocated (released) at

runtime using the keyword Erase. A dynamic array that has been deallocated

must be redimensioned with ReDim before it can be used again. Erase can also

be used with fixed-sized arrays to initialize all the array elements to the empty

string. For example, the statement

Erase mDynamic

Accessing a dynamic array that has been deallocated is an error. 32.17

 252

13.8. Let us Sum Up

VBScript is derived from Visual Basic, which has origins in GW-Basic

that was shipped with all early versions of MS-DOS. GW-Basic evolved from the

original Dartmouth BASIC (Beginners All-purpose Symbolic Instruction Code)

developed in the 1960's.

An expression is a chunk of VBScript syntax in the form of a calculation

that uses operators to combine numbers, strings, and variables and evaluate

them to some value. An expression can be used any place where a variable is

used. Variables are used to store data items that can change (e.g. "vary") during

the lifetime of a program. All variables have one variable type called variant.

Variables in VBScript do not have to be "declared" before they are used, they

spring to life when you first use them. VBScript variable names are not case

sensitive

VBScript programs will begin with a <SCRIPT> tag and end with a

</Script> tag. The first thing you'll notice in the VBScript code block is the

<SCRIPT LANGUAGE="VBS">

Keep in mind that you must close out your script code block with a

</SCRIPT> tag..

A variable is a name that represents the contents of some space in

memory. Thinking of a variable in terms of memory space will help you to

understand an important concept in programming: data types.

All variables in VBScript are of the type variant. A variant is a variable

that is simply the name for a piece of data. The variant type doesn't differentiate

between types of data until the time comes to process that data. This means

that a variable can represent literally any value or type of value.

 253

Subtypes of Variant Types

Boolean

Byte

Integer

Long

Single

Double

String

Date

Empty

Object

Error

Strictly speaking, you don't need to declare your variables in VBScript.

You could simply set the variables that you need on the fly:

MyString="This is my string"

To assign a value to a variable, place the variable on the left followed by

an equals sign and the value on the right:

Scalar

The types of variables we have talked about so far have been scalar

variables. A scalar variable has only one value assigned to it at a time.

Depending on the types of programs you write, you'll probably use scalar

variables often in your scripts.

VBScript uses many familiar or intuitive operators, such as +, -, *,and /

for addition, subtraction, multiplication, and division. VBScript has an

additional division operator, \, which performs integer division. 8 / 5 is 1.6,

where 8 \ 5 is 1. The exponentiation operator is ^. An operator supported in

virtually all programming languages that may be new is the modulus division

operator. Modulus division returns the remainder rather than the quotient. In

VBScript the modulus operator is MOD.

Decision-making in programs is what programming is all about.

 254

If...Then...Else

 The If...Then...Else statement is one of the basic capabilities of a

computer language. This statement tests for the truth of a statement and,

depending on the answer, processes information or moves on to another piece

of code.

For...Next

The For...Next statement is used to run a block of code statements a

certain number of times:

Do...Loop

Another common looping statement is Do...Loop. A Do...Loop statement

is usually better to use than a For...Next and Exit For combination. The

Do...Loop statement allows you to create a loop that runs an infinite number of

times.

For Each...Next

The For Each...Next loop is used like the For...Next loop. It is used to test

conditions in collections of objects. Objects have properties that are specified by

keywords that are appended to the object name after a period.

While...Wend

According to Microsoft, While...Wend is included in VBScript for those

programmers who are familiar with its usage, but it's not well documented.

Microsoft recommends using Do...Loop instead, but let's take a quick look at

the While...Wend statement to become familiar with its usage:

Array

An array is like a list. When you go to the grocery store, you often carry a

list of the items that you need to purchase. You declare an array variable in

VBScript the same way you do a scalar variable.

Statement ReDim allocates memory for array dynamic All dynamic

array memory must be allocated via ReDim. Dynamic arrays are more flexible

than fixed-sized arrays, because they can be resized anytime by using ReDim to

accommodate new data.

ReDim dynamic(5)

 255

13.9. Lesson end Activities

1. What is the purpose of Variables?

2. What are the datatypes available in VBScript?

3. Explain Arrays in VBScript.

13.10. Check your Progress

 1. Describe different types of control statements available in VBScript.

 2. Explain the operators available in VBScript.

 3. Write a VBScript program for array multiplication.

13.11. Reference

1. Internet & World Wide Web, H.M. Deitel, P.J.Deitel and A.B.Goldberg,

Prentice Hall.

2. www.microsoft.com

 256

 257

Lesson 14

VBScript - II

Content

14.0. Objective

14.1.Introduction

14.2. Sub Procedures and Function Procedures

14.3. Built-in Functions

14.4 Basic Functions

14.5. String Functions

14.6. Conversion Functions

14.7. Math Functions

14.8. Time and Date Functions

14.9. Boolean Functions

14.10. Class and Objects

14.11. Let us Sum Up

14.12. Lesson End Activities

14.13. Check Your Progress

14.14. Reference

14.0. Objective

• Learn about procedures and how they are used in VBS scripts

• Learn about the difference between a Sub procedure and a Function

procedure

• Learn about VBScript's intrinsic functions

• Learn how to utilize VBS functions in your own scripts

14.1. Introduction - Procedure

Procedures are the logical parts into which a program is divided. The

code inside a procedure is run when the procedure is called. A procedure can

 258

be called with a Call statement in another procedure, or it can be triggered by

an event such as a button click.

Events are triggered when messages are sent from the operating system

to VBScript. In graphical operating systems, such as Windows, the way that

different applications interact with the operating system is by sending and

receiving. The operating system is the controlling force in the graphical

environment, and the scripts that you write will depend in large part on the

resources and messages made available to you from Windows.

14.2. Sub Procedures and Function Procedures

There are two types of procedures in VBScript: Sub procedures and

Function procedures. Sub procedures are blocks of code that are wrapped in

the Sub...End Sub keywords. A Sub can take arguments and process them

within the Sub procedure. A Sub can call other procedures, but it can't return a

value generated to the calling procedure directly.

A Function procedure works just like a Sub procedure. It can take

arguments and call other procedures. Most importantly, Function procedures

return a value to the calling procedure.

Let's take a look at some sample code. Following example contains three

procedures. We'll use message boxes to track the program flow.

 Flow.htm.

<HTML>

<HEAD>

<TITLE>Tracking Procedures</TITLE>

</HEAD>

<BODY>

<H1>Tester Page for VBS</H1>

<HR COLOR="BLUE">

<INPUT TYPE="SUBMIT" NAME="Btn1" VALUE="Click to test the code">

<SCRIPT LANGUAGE="VBScript">

 259

<!--

Sub Btn1_OnClick

 Dim Message, x

 x=100

 Message="Sub Btn1_OnClick"

 MsgBox Message, 0,"Procedure Result"

 Message = "Sub MySub"

 MySub(Message)

 x = ReturnCount(x)

 Message = "Function returned " + CStr(x)

 MsgBox Message, 0, "Procedure Result"

End Sub

Sub MySub(Msg)

 MsgBox Msg, 0, "Procedure Result"

End Sub

Function ReturnCount(Num)

 ReturnCount = Num + 1

End Function

-->

</SCRIPT>

</BODY>

</HTML>

 260

Output

Let's track Listing 3.1 and see where it's going. Using our tester template,

we create two procedures to go with the Sub Btn1_OnClick procedure that was

already in place. The MySub procedure takes an argument called Msg and in

turn passes that value to a MsgBox function. The other new procedure is the

Function ReturnCount, which simply takes an argument, Num, and adds 1 to

it.

If you take a look at how the program flows, you'll see that it all begins in

Sub Btn1_OnClick. The variable Message is assigned the name Sub

Btn1_OnClick, and a MsgBox function is called with Message as one of the

arguments. Notice that the flow of the Sub Btn1_OnClick procedure is halted

until the message box is dismissed.

After the message box is closed, the value of Message is set to the name

of the second procedure in the script, Sub MySub. The MySub procedure is

called, with Message as an argument. The argument Message is then called in

another MsgBox function call from within MySub. Again, program flow is

stopped while the message box is displayed.

 261

Finally, the variable x, having previously been set to a value of 100, is

used as an argument in the call to the function ReturnCount. ReturnCount

adds 1 to x and returns the value to the calling procedure. We then make x part

of the Message variable. Notice that the argument we pass to the MsgBox

function must be a string, so we need to convert the value of x to a string before

it can be made part of Message. The message box is then displayed with the

message "Function returned 101." When the message box is closed, End Sub is

hit, and the script ends.

Arguments to Procedures

Arguments can be used to pass data to either Sub or Function

procedures. When calling a procedure, you can simply use the procedure name

followed by arguments, which are separated by commas:

MyProcedure Arg1, Arg2, Arg3

Or you can use the Call statement, in which case the argument list must

be enclosed by parentheses:

Call MyProcedure(Arg1, Arg2)

You can also call the procedure without the Call statement and still include

parentheses.

Creating and Calling Functions

When you create and use a function, the return value of the function is

held by a variable with the name of the function. For example, if you create a

function that converts pennies to dollars, you might name the function Dollar:

Function Dollar(Cents)

 Dollar = Cents/100

End Function

The function returns the value of Dollar to the calling procedure.

To call the Dollar function from another procedure, you must use a

variable of some sort to hold the return value. If you call Dollar from the

following code, the value Dollars will hold the returned value of the function:

Dollars = Dollar(2456)

 262

Function procedures are great tools for working with data in a VBS

script. When you create functions that you know you might want to use again,

be sure to save them, so that you can easily reuse them in new scripts.

14.3. Built-in Functions

In addition to creating your own function procedures for use in your

scripts, you can use a number of intrinsic function procedures that are built

into VBScript. These functions include string operations, conversions, math

functions, time and date functions, and Boolean functions. Understanding

these functions will benefit you greatly as you begin to write larger and more

complex scripts.

14.5. Basic Functions

The message box is one of the most useful functions in VBScript. The

two types of message boxes available to you are the message box and the input

box.

InputBox

The InputBox function makes it possible for you to get input from a user

without placing a text control on the form. It takes seven possible parameters:

InputBox(prompt, title, default, xpos, ypos, helpfile, context)

All the arguments of the InputBox function are optional except prompt.

Let's take a look at each of these parameters in detail.

prompt

The prompt argument is a string containing the question that you

are asking your user:

InputBox("What is your name?")

Title

The Title argument determines the title of the dialog. This

argument must be a string expression. If the title isn't specified,

the title of the dialog defaults to the application name.

 263

default

The default argument specifies a string that appears in the input

box on the dialog when the dialog is displayed. Leave this

parameter blank if you don't want the dialog to display default

text.

xpos and ypos

The xpos and ypos arguments specify where in relation to the

screen the dialog is displayed. These arguments are made in

twips. The xpos argument specifies the horizontal value, and the

ypos argument specifies the vertical value.

helpfile and context

The helpfile argument specifies a Windows Help file to open if the

user presses the f1 button. If you specify a Help file, you also need

to specify a context id.

The context argument specifies a Help context id number for the

file called in the helpfile argument. The Help context id number

opens the corresponding Help topic.

len

The len function returns the length of a string or the number of

bytes in a variable.

MsgBox

The message box is useful when you want to notify a user that an event

has occurred. You can specify the buttons shown in the dialog, and the

function returns a value that indicates which button was clicked:

MsgBox(prompt, buttons, title, helpfile, context)

The helpfile and context arguments in the MsgBox function are optional.

prompt

The prompt argument is a string value of up to 1024 characters. As with

the InputBox function, you can use the carriage return line-feed

combination (Chr(13)& Chr(10)), a carriage return (Chr(13)), or a line feed

(Chr(10)) to break the prompt into multiple lines:

 264

Dim Message

Message = "This text is broken" + (Chr(13)& Chr(10)) + "into multiple

lines."

MsgBox (Message, 0, "Message Title")

buttons

The buttons argument is a VBScript constant or a numeric value that

determines which buttons are displayed on the dialog. Table 14.1 lists

the values and constants that you can use when calling this function.

Table 14.1. Settings for the buttons argument.

Value Buttons shown

0 OK

1 OK, Cancel

2 Abort, Retry, Ignore

3 Yes, No, Cancel

4 Yes, No

5 Yes, No, Cancel

16 (Critical Message Icon)

32 (Warning Query Icon)

48 (Warning Message Icon)

64 (Information Message Icon)

0 (First button default)

256 (Second button default)

512 (Third button default)

0 (User must respond before continuing

with application)

4096 (User must respond before continuing

with the operating system)

 265

title

The title argument is a string that specifies the text shown in the titlebar

of the message box. If no title is specified, the title of the calling

application is displayed.

Helpfile and Context

These arguments work the same as for InputBox. Helpfile specifies a

Windows Help file, and context specifies the Help context id for the topic.

Return Values

The return values for the MsgBox function are the numeric or constant

values of the button pressed. Table 14.2 lists the possible return values

for the MsgBox function.

Table 14.2. Possible return values for the MsgBox function.

Button Clicked Value

OK 1

Cancel 2

Abort 3

Retry 4

Ignore 5

Yes 6

No 7

Example : MsgBox return value.

<HTML>

<HEAD>

<TITLE>The MsgBox Returns</TITLE>

</HEAD>

<BODY>

 266

<H1>Tester Page for VBS</H1>

<HR COLOR="BLUE">

<INPUT TYPE="SUBMIT" NAME="Btn1" VALUE="Click to test the code">

<SCRIPT LANGUAGE="VBScript">

<!--

Sub Btn1_OnClick()

Dim strQuestion, intReturn

Do Until intReturn = 7

strQuestion = "Do you want to see another dialog?"

intReturn=MsgBox(strQuestion, 4, "Question")

Loop

End Sub

-->

</SCRIPT>

</BODY>

</HTML>

In this script, the button on the page is clicked, and a yes/no message

box is displayed asking whether the user wishes to see the message box

repeated. If the answer stored in intReturn holds a value of Yes (6), then the

dialog is redisplayed. If the user clicks No (7), the message box is closed and the

script is ended until the button is pushed again.

VarType

The VarType function returns the subvalue of a variable. This function is

useful for verifying the contents of a variable or for checking the type of variable

before trying to operate on it. Table 14.3 shows the possible return values for

the VarType function.

 267

Table 14.3. Possible return values for the VarType function.

Subtype Value

(empty) 0

(null) 1

Integer 2

Long 3

Single 4

Double 5

Currency 6

Date 7

String 8

OLE Object 9

Error 10

Boolean 11

Variant 12

Non-OLE Object 13

Byte 17

Array 8192

You can use either the value or the constant to determine the return

type. When the variable on which you're running the function is an array, the

function returns the vbArray value added to the variable type in the array.

 268

14.5. String Functions

The following string functions act on string data to allow you to

manipulate and parse strings. Parsing textual data means dividing it into

logical divisions. Let's take a look at the various string-related functions and

then look at an example that utilizes some of the functions.

Asc

The Asc function takes a string as a parameter and returns the ASCII

character code for the first character in the string:

Dim strData, intCharCode

strData = "This is a string"

intCharCode = Asc(strData)

In this code example, the function returns the value of T, which is 84. If

you run this function on an empty string, it generates a runtime error.

Chr

The Chr function takes a character code as a parameter and returns the

corresponding character. Keep in mind that the characters for codes 0 to 31 are

nonprintable:

StrMyString = "This is my two line" + (Chr(13) + Chr(10)) + "text string example."

In this example line, the string has a carriage return and a line feed

added to the middle of the text. This will cause a break in the string, displaying

it on two lines.

InStr

The InStr function is a powerful text-searching tool that finds the

position of text substrings within strings of text. This is a fairly complex

function, so you should first be familiar with the function's syntax:

position = InStr(startpos, string1, string2, type)

The InStr function returns the position of the substring within the string.

In this case, the return value is held by the variable position. Let's go through

the other arguments individually.

 269

Startpos

The startpos argument is a numeric value that tells the function where to

start searching. This is an important argument because if you're thinking about

adding search functions to your own string operations, you'll need to adjust the

number as you find multiple occurrences of the search string in a large body of

text.

String1

The string1 argument is the string in which you are searching for the

string2 string.

String2

String2 is the text for which you're searching.

Type

The type argument specifies the string comparison that you're

performing. This argument can have a value of 0 (default) or 1. A type 0

comparison is a binary comparison. The function will return a position only in

the case of an exact match. An argument of 1 will do a non-case-sensitive,

textual search.

Dim strBigString, strSearchString, intReturn0, intReturn1

strBigString = "This is the BIG string"

strSearchString = "big"

intReturn0 = InStr(, strBigString, strSearchString, 0)

intReturn1 = InStr(, strBigString, strSearchString, 1)

In this sample, the intReturn0 variable is set to 0 because the function

does not find the string "big" in strBigString. The variable inReturn1 is set to 13

because strSearchString is found in the non-case-sensitive search.

 270

Table14.4. Return values for the InStr function.

String Values Return Values

mainstring length is 0 0

mainstring is Null Null

searchstring length is

0

startpos

searchstring is Null Null

searchstring not

found

0

searchstring found (position of string in

mainstring)

If the value of startpos is greater than the length of mainstring, the

function returns a 0.

LCase

The LCase function takes a string and converts all the characters to

lowercase. It takes a string as an argument and returns the converted string.

Left

The Left function returns a string containing the characters from the left

side of the string, up to a specified number. The function takes two arguments,

string and length:

Dim strMyString, strMain

strMain = "The rain in Spain..."

strMyString = Left(strMain, 15)

In this sample, the string variable strMyString would be set to The r, the

first five characters of the string. If the number you specify in the length

argument is greater than or equal to the length of the string, the function will

return the entire string.

 271

LTrim

The LTrim function returns a copy of the string argument with the

leading spaces removed from the string:

Dim strMyString, strMain

strMain = " There are four leading spaces here."

strMyString = LTrim(strMain)

In this example, the functions returns the string, "There are four leading

spaces here."

Mid

The Mid function returns a substring of a specified length from another

string. This function takes three parameters: string, start, and length. The

length argument is optional.

Dim strMyString, strMain

strMain = "Ask not what your country can do for you..."

strMyString = Mid(strMain, 8, 10)

In this example, we're looking for a string that starts at character 8 and

is 10 characters in length. The string value contained in strMyString is equal to

what your .

Right

The Right function works like the Left function, but it returns a specified

number of characters starting from the last character in the string. This

function takes the number of characters as an argument and returns a string:

Dim strMyString, strMain

strMain = "How now brown cow?"

strMyString = Right(strMain, 10)

In this example, strMyString is set to the last 10 characters of strMain, or

brown cow?.

RTrim

The Rtrim function works like the Ltrim function. It removes trailing

spaces from a string. It takes a single argument, string, and returns a string.

 272

Str()

The Str()function takes a number as an argument and returns a string

value representing the number. The first character in the resulting string is

always a space that acts as a placeholder for the sign of the number. If you

want to use a numeric value in a string or a function that takes a string as a

parameter, you'll need to use this function or the CStr function to make the

conversion first.

StrComp

The StrComp function takes two strings as arguments and compares

them, based on the third argument, which defines the type of comparison:

Dim RetVal, strString1, strString2

strString1 = "This is a string."

strString2 = "This is a STRING."

RetVal = StrComp(strString1, strString2, 1)

The StrComp function returns a numeric value that indicates whether

the items are the same. The comparison type has two possible values: 0

(default) is a binary comparison, and 1 is non-case-sensitive. Table 14.5 show

the return values for the StrComp function.

Table 14.5. Return values for the StrComp function.

Return Value Description

-1 String1 < String2

0 String1 = String2

1 String1 > String2

NULL One of the strings is null

String

The String function takes a number and character code argument and

returns the character, repeated a number of times:

 273

Dim strRetString

strRetString = String(3, 97)

This example returns the string "aaa". If the character code argument is

greater than 255, the code is automatically converted to a valid character using

the formula charcode = (char Mod 256).

Trim

The Trim function returns the string argument, with leading and trailing

spaced removed.

UCase

The UCase function converts all the characters in the string argument to

uppercase.

Val

The Val function takes a string argument and returns numbers from the

string. The function stops retrieving numbers as soon as it hits a non-numeric

character:

Dim MyNumber, strMyString

MyString = "300 South Street"

MyNumber = Val(strMyString)

In this example, the function returns the number 300. The Val function

recognizes decimal points and radix prefixes. A radix prefix is a prefix that

defines an alternative numbering system. The &O prefix is used for octal values

and &H for hexadecimal.

14.6. Conversion Functions

Conversion functions enable you to change the subtype of a variable.

Although VBScript uses the variant type for all variables, in many cases an

argument of a certain type is required. An example would be a function that

takes a string argument. If you want to be able to use numeric data, you'll need

to convert it to a string before calling the function.

CByte

The Cbyte function converts an expression to the subtype byte.

 274

CDbl

The CDbl function converts an expression to the subtype double.

CInt

The CInt function converts an expression to the subtype integer.

CLng

The CLng function converts an expression to the subtype long.

CStr

The CStr function returns a string from a valid expression. Table 3.6 lists

the return values for various expression types.

Table 14.6. Return values for the CStr function.

Return Value Expression Type

True or False Boolean

Short-Date Date

Runtime

Error

Null

" " Empty

Error(#) Error

Number Number

CVErr

The CVErr function returns the subtype error. It takes any valid error

number as an argument.

14.7. Math Functions

Math functions enable you to perform operations on numbers in your

VBS scripts. You'll find these functions fairly straightforward.

Abs

The Abs function takes a number as a parameter and returns its

absolute value. The absolute value of a number is the numerical value of

 275

a number without considering its sign. An argument of -7 would return

the value 7.

Array

The Array function returns a variant value containing an array.

The array can be of any subtype. This function takes a list of values

separated by commas as a parameter.

Atn

The Atn function returns the arctangent of a number, a

trigonometric function that is used to determine angles in triangles. This

function is the inverse of tangent (Tan), which calculates the ratio of

sides in a right triangle. It takes a number as an argument.

Exp

The Exp function takes a numeric argument and returns e (the

base of natural logarithms) raised to a power.

Hex

The Hex function returns a string value containing the value of an

argument converted to hexadecimal form. If the argument is a fractional

value, it is rounded to the nearest whole number before the function

returns the string.

Keep in mind that this function returns a string. If you want to

perform mathematical operations on the returned value, you must first

convert the string back into a numerical value. Hexadecimal numbers

are represented in VBScript using the &H prefix.

Int

The Int function returns the whole number portion of an

argument. If the argument is negative, Int returns the first integer value

that is less than or equal to the argument.

Fix

The Fix function works like the Int function, returning the whole

number portion of an argument. The difference is that if the number

 276

argument is negative, Fix returns the first integer value that is greater

than or equal to the argument.

Log

The Log function returns the natural logarithm of a numeric

argument. The numeric argument that this function processes must be

greater than zero.

Oct

The Oct function returns a string representing the octal value of a

numeric argument. If the numeric argument is fractional, it is rounded

up before the function returns a value. As with the Hex function, the

returned string must be converted back to numeric form before you can

perform mathematical operations on it. To use an octal value

mathematically, you use the &O prefix.

Rnd

The Rnd function takes a numeric argument and returns a value

between zero and one. The number generated depends on the numeric

argument in relation to the values in Table 14.7.

Table 14.7. Number value determines generation technique.

Number

Value

Generates

<0 Same number every time

>0 Next random number

=0 Last generated number

"" Next random value in

sequence

If you want to generate a range of random numbers, use the following formula:

Int((upperbound - lowerbound + 1)*Rnd + lowerbound)

 277

Example : Lotto.htm.

<HTML>

<HEAD>

<TITLE>Play 3 Generator</TITLE>

</HEAD>

<BODY><CENTER>

<H1>Play 3 Generator</H1>

<HR COLOR="BLUE">

<INPUT TYPE="SUBMIT" NAME="Btn1" VALUE="Click for the lucky

numbers!">

<INPUT TYPE="SUBMIT" NAME="BtnBall1" VALUE="">

<INPUT TYPE="SUBMIT" NAME="BtnBall2" VALUE="">

<INPUT TYPE="SUBMIT" NAME="BtnBall3" VALUE="">

<SCRIPT LANGUAGE="VBScript">

<!--

Sub Btn1_OnClick()

 BtnBall1.Value = RndBall()

 BtnBall2.Value = RndBall()

 BtnBall3.Value = RndBall()

End Sub

Function RndBall()

 RndBall = (Int((9-0+1)*Rnd+0))

End Function

-->

</SCRIPT>

</CENTER>

</BODY>

</HTML>

 278

Output :

Sgn

The Sgn function returns a numeric value representing the sign of

a number argument. It returns 1 if the number is greater than zero, 0 if

equal to zero, and -1 if less than zero.

Sqr

The Sqr function returns the square root of a numeric argument.

The argument value must be greater than or equal to zero.

Sin

The Sin function returns the sine of an angle.

Tan

The Tan function returns the tangent of an angle.

14.8. Time and Date Functions

You'll find time and date functions extremely useful in

customizing your Web pages. You can add automatic time and date

 279

stamping to pages, and you can write programs that provide useful

calendar functions.

Date

The Date function takes no arguments and returns the current

system date. In Figure 3.5, the Date function returns the date value in

the tester page.

DateSerial

The DateSerial function takes year, month, and day arguments

and returns a variant of subtype date. The year argument can be any

year between 100 and 9999. The month and day arguments are numeric

values.

DateValue

The DateValue function takes a string argument containing a valid

date and returns a variant of subtype date. This is an extremely useful

function, because it interprets a number of formatted date strings. For

example, you could use "January 1, 1999," "1/1/99," or "Jan 1, 1999" as

an argument. Once the date is a variant of subtype date, other date

functions can be used on it.

Day

The Day function takes a date argument and returns the day as a

numeric value between 1 and 31.

Hour

The Hour function takes a time argument and returns an hour

value between 0 and 23.

Year

The Year function takes a date value and returns the year.

Weekday

The Weekday function takes a date and optionally a firstdayofweek

argument and returns a numeric value representing the day of the week.

If firstdayofweek isn't specified, the function defaults to Sunday. The

settings for firstdayofweek are shown in Table 14.8.

 280

Table 14.8. Day constants.

Day Numeric Value

System * 0

Sunday 1

Monday 2

Tuesday 3

Wednesday 4

Thursday 5

Friday 6

Saturday 7

*This value is used only in the firstdayofweek argument and is not a

return value.

Listing 3.4 takes a string that you enter, converts the string to

date format, and then runs the Day function against the date. The return

value is then converted to a string that sends the day of the week to the

message box. There is no error checking built into the script, so a

nonvalid date entry will result in a runtime error. Figure 3.6 shows the

results of Listing 3.4.

Example :. Day.htm.

<HTML>

<HEAD>

<TITLE>Day of the week</TITLE>

</HEAD>

<BODY>

<H1>What day did it happen?</H1>

<HR COLOR="BLUE">

 281

Enter any valid date and click the button to find out what day it

was!

<INPUT TYPE="TEXT" NAME="TxtDate">

<INPUT TYPE="SUBMIT" NAME="Btn1" VALUE="Tell me the day of the

week">

<SCRIPT LANGUAGE="VBScript">

<!--

Sub Btn1_OnClick()

 Dim DayVal, Message, MyDate

 MyDate = DateValue(TxtDate.Value)

 DayVal = Weekday(MyDate)

 If DayVal = 1 then Message = "Sunday"

 If DayVal = 2 then Message = "Monday"

 If DayVal = 3 then Message = "Tuesday"

 If DayVal = 4 then Message = "Wednesday"

 If DayVal = 5 then Message = "Thursday"

 If DayVal = 6 then Message = "Friday"

 If DayVal = 7 then Message = "Saturday"

 Message = "It happened on a " + Message + "."

 MsgBox Message, 64,"When did it happen?"

End Sub

-->

</SCRIPT>

</BODY>

</HTML>

 282

Output

Minute

The Minute function retrieves the minute value of a time value.

Month

The Month function returns a numeric value for the month from a

valid date.

Now

The Now function returns the current date and time from the

client machine. This function takes no arguments.

Second

The Second function returns the seconds value from a time value.

Time

The Time function returns the current system time as a date

subtype variant.

 283

TimeSerial

The TimeSerial function takes hours, minutes, and seconds as

arguments and returns a variant of subtype date. The hour argument is

an integer between 0 and 23.

TimeValue

The TimeValue function takes a string containing a valid time and

returns a variant of subtype date containing the time.

You can use this function to get input from the user and convert it

to a date format. Valid values for the time argument include times from

12- and 24-hour clocks.

14.9. Boolean Functions

Boolean functions always return a value of true or false. Each of the

functions listed in Table 14.9 tests for the truth of a condition.

Table143.9. Boolean functions.

Function Tests

IsArray Is variable an array?

IsDate Is expression a date?

IsEmpty Has the variable been

initialized?

IsError Is this an error value?

IsNull Is this a null value?

IsNumeric Is this a numeric value?

IsObject Is this variable an

object?

 284

These Boolean functions are important because VBScript has little built-

in error checking and no debugger other than Internet Explorer. You can use

the Boolean functions to test data before trying to feed the data into functions

where it might cause an error.

The following example shows the same program with a feature to check

whether the data from the text input box is a valid date.

Example : DayChk.htm.

<HTML>

<HEAD>

<TITLE>Day of the week</TITLE>

</HEAD>

<BODY>

<H1>What day did it happen?</H1>

<HR COLOR="BLUE">

Enter any valid date and click the button to find out what day it was!

<INPUT TYPE="TEXT" NAME="TxtDate">

<INPUT TYPE="SUBMIT" NAME="Btn1" VALUE="Tell me the day of the week">

<SCRIPT LANGUAGE="VBS">

<!--

Sub Btn1_OnClick()

 Dim DayVal, Message, MyDate, blnCheck

blnCheck = IsDate(TxtDate.Value)

If blnCheck = True then

 MyDate = DateValue(TxtDate.Value)

 DayVal = Weekday(MyDate)

 If DayVal = 1 then Message = "Sunday"

 If DayVal = 2 then Message = "Monday"

 If DayVal = 3 then Message = "Tuesday"

 285

 If DayVal = 4 then Message = "Wednesday"

 If DayVal = 5 then Message = "Thursday"

 If DayVal = 6 then Message = "Friday"

 If DayVal = 7 then Message = "Saturday"

 Message = "It happened on a " + Message + "."

 MsgBox Message, 64,"When did it happen?"

Else

Message = "You must enter a valid date."

MsgBox Message, 48,"Error"

End If

End Sub

-->

</SCRIPT>

</BODY>

</HTML>

14.10 Classes and Objects

Objects encapsulate (i.e., wrap together) data (attributes) and methods

(behaviors); the data and methods of an object are intimately related. Objects

have the property of information hiding. This phrase means that objects may

communicate with one another, but they do not know how other objects are

implemented— implementation details are hidden within the objects

themselves. Surely it is possible to drive a car effectively without knowing the

details of how engines and transmissions work.

In VBScript, the unit of object-oriented programming is the Class from

which objects are instantiated (i.e., created). Methods are VBScript procedures

that are encapsulated with the data they process within the “walls” of classes.

VBScript programmers can create their own user-defined types called classes.

Classes are also referred to as programmer defined types. Each class contains

data as well as the set of methods that manipulate the data. The data

components of a class are called instance variables. Just as an instance of a

 286

Variant is called a variable, an instance of a class is called an object. The focus

of attention in object-oriented programming with VBScript is on classes rather

than methods.

This section explains how to create and use objects, a subject we call

object-based programming (OBP). VBScript programmers craft new classes

and reuse existing classes. Software is then constructed by combining new

classes with existing, well-defined, carefully tested, well-documented, widely

available components. This kind of software reusability speeds the

development of powerful, high-quality software. Rapid applications

development (RAD) is of great interest today. Early versions of VBScript did

not allow programmers to create their own classes, but VBScript programmers

can now indeed develop their own classes, a powerful capability also offered by

such object-oriented languages as C++ and Java.

Packaging software as classes out of which we make objects makes more

significant portions of major software systems reusable. On the Windows

platform, these classes have been packaged into class libraries, such as

Microsoft’s MFC (Microsoft Foundation Classes), that provide C++

programmers with reusable components for handling common programming

tasks, such as the creating and manipulating of graphical user interfaces.

Objects are endowed with the capabilities to do everything they need to

do. For example, employee objects are endowed with a behavior to pay

themselves. Video game objects are endowed with the ability to draw themselves

on the screen. This is like a car being endowed with the ability to go faster (if

someone presses the accelerator pedal), go slower (if someone presses the brake

pedal) and turn left or turn right (if someone turns the steering wheel in the

appropriate direction). The blueprint for a car is like a class. Each car is like an

instance of a class. Each car comes equipped with all the behaviors it needs,

such as “go faster,” “go slower” and so on, just as every instance of a class

comes equipped with each of the behavior instances of that class.

Classes normally hide their implementation details from the clients (i.e.,

users) of the classes. This is called information hiding.

 287

As an example of information hiding, let us consider a data structure

called a stack. Think of a stack in terms of a pile of dishes. When a dish is

placed on the pile, it is always placed at the top (referred to as pushing the dish

onto the stack). When a dish is removed from the pile, it is always removed from

the top (referred to as popping the dish off the stack). Stacks are known as

last-in, first-out (LIFO) data structures—the last item pushed (inserted) on the

stack is the first item popped (removed) from the stack. So if we push 1, then 2,

then 3 onto a stack, the next three pop operations will return 3, then 2, then 1.

The programmer may create a stack class and hide from its clients the

implementation of the stack. Stacks can be implemented with arrays and other

techniques, such as linked lists. A client of a stack class need not know how

the stack is implemented. The client simply requires that when data items are

placed in the stack with push operations, they will be recalled with pop

operations in last-in, first-out order. Describing an object in terms of behaviors

without concern for how the behaviors are actually implemented is called data

abstraction, and VBScript classes define abstract data types (ADTs). Although

users may happen to know how a class is implemented, they should not write

code that depends on these details. This allows a class to be replaced with

another version without affecting the rest of the system, as long as the Public

interface of the class does not change (i.e., every method still has the same

name, return type and parameter list in the new class definition).

A primary activity in VBScript is creating new data types (i.e., classes)

and expressing the interactions among objects of those classes.

An ADT actually captures two notions, a data representation of the ADT

and the operations allowed on the data of the ADT. For example, subtype

integer defines addition, subtraction, multiplication, division and other

operations in VBScript, but division by zero is undefined. The allowed

operations and the data representation of negative integers are clear, but the

operation of taking the square root of a negative integer is undefined.

Access to Private data should be carefully controlled by the class’s

methods. For example, to allow clients to read the value of Private data, the

class can provide a get method. It also called an accessor method or a query

method.

 288

To enable clients to modify Private data, the class can provide a set

method. Italso called a mutator method. Such modification would seem to

violate the notion of Private data. But a set method can provide data validation

capabilities (e.g., range checking) to ensure that the data is set properly and to

reject attempts to set data to invalid values. A set method can also translate

between the form of the data used in the interface and the form used in the

implementation. A get method need not expose the data in raw format; rather,

the get method can edit the data and limit the view of the data that the client

will see.

The class designer need not provide set or get methods for each Private

data member; these capabilities should be provided only when it makes sense

and after careful thought. 32.4

Classes often provide Public methods to allow clients of the class to set

(i.e., assign values to) or get (i.e., obtain the values of) Private instance

variables. These methods are special methods in VBScript called Property Let,

Property Set and Property Get (collectively these methods and the internal

class data they manipulate are called properties). More specifically, a method

that sets variable mInterestRate would be named Property Let InterestRate and

a method that gets the InterestRate would be called Property Get InterestRate.

Procedures Property Let and Property Set differ in that Property Let is

used for nonobject subtypes (e.g., integer, string, byte) and Property Set is used

for object subtypes.

Attempting to call a method or access a property for a reference that does

not refer to an object is an error. Attempting to assign a reference a value

without using Set is an error. 32.19

Any Property Get, Property Let or Property Set method may contain the

Exit Property statement that causes an immediate exit from a Property

procedure.

Accessor methods can read or display data. Another common use for

accessor methods is to test the truth or falsity of conditions—such methods are

often called predicate methods.

 289

An example of a predicate method would be an IsEmpty method for any

container class—a class capable of holding multiple objects—such as a linked

list or a stack. A program might test IsEmpty before attempting to remove

another item from a container object. A program might test IsFull before

attempting to insert another item into a container object. It would seem that

providing set and get capabilities is essentially the same as making the instance

variables Public. This is another subtlety of VBScript that makes the language

desirable for software engineering. If an instance variable is Public, it may be

read or written at will by any method in the program. If an instance variable is

Private, a Public get method certainly seems to allow other methods to read the

data at will, but the get method controls the formatting and display of the data.

A Public set method can—and most likely will—carefully scrutinize attempts to

modify the instance variable’s value. This ensures that the new value is

appropriate for the data item. For example, an attempt to set the day of the

month to 37 would be rejected, an attempt to set a person’s weight to a negative

value would be rejected, and so on.

This example briefly introduces a VBScript feature for complex pattern

matching called regular expressions. We use regular expressions to validate

the format of the social security number. Client-side scripts often validate

information before sending it to the server.

Example :

<!-- classes.html -->

<!-- VBScript Class -->

<html>

 <head>

 <title>Using a VBScript Class</title>

 <script type = "text/vbscript">

 <!--

 Option Explicit

 290

 Class Person

 Private name, yearsOld, ssn

 Public Property Let FirstName(fn)

 name = fn

 End Property

 Public Property Get FirstName()

 FirstName = name

 End Property

 Public Property Let Age(a)

 yearsOld = a

 End Property

 Public Property Get Age()

 Age = yearsOld

 End Property

 Public Property Let SocialSecurityNumber(n)

 If Validate(n) Then

 ssn = n

 Else

 ssn = "000-00-0000"

 Call MsgBox("Invalid Social Security Format")

 End If

 End Property

 291

Public Property Get SocialSecurityNumber()

SocialSecurityNumber = ssn

 If regularExpression.Test(expression) Then

 Validate = True

 Else

 Validate = False

 End If

 End Property

 Public Function ToString()

ToString = name & Space(3) & age & Space(3) & ssn

 End Function

 End Class ' Person

 Sub cmdButton_OnClick()

 ' Declare object reference

 ' Instantiate Person object

With p

FirstName = Document.Forms(0).txtBox1.Value

Age = CInt(Document.Forms(0).txtBox2.Value)

SocialSecurityNumber =_

Document.Forms(0).txtBox3.Value

Call MsgBox(.ToString())

End With

End Sub

 292

 -->

</script>

</head>

<body>

<form action = "">Enter first name

<input type = "text" name = "txtBox1" size = "10" />

 <p>Enter age

<input type = "text" name = "txtBox2" size = "5" /></p>

<p>Enter social security number

 <input type = "text" name = "txtBox3" size = "10" />

 </p><p>

 <input type = "button" name = "cmdButton"

 value = "Enter" /></p>

 </form>

 </body>

 </html>

Private Function Validate(expression)

Dim regularExpression

Set regularExpression = New RegExp

regularExpression.Pattern = "^\d{3}-\d{2}-\d{4}$"

Dim p

Set p = New Person

End Function

 293

14.11. Let us Sum UP

Procedures are the logical parts into which a program is divided. The

code inside a procedure is run when the procedure is called. A procedure can

be called with a Call statement in another procedure, or it can be triggered by

an event such as a button click.

There are two types of procedures in VBScript: Sub procedures and

Function procedures. Sub procedures are blocks of code that are wrapped in

the Sub...End Sub keywords. A Sub can take arguments and process them

within the Sub procedure. A Sub can call other procedures, but it can't return a

value generated to the calling procedure directly.

A Function procedure works just like a Sub procedure. It can take

arguments and call other procedures. Most importantly, Function procedures

return a value to the calling procedure.

 Arguments can be used to pass data to either Sub or Function

procedures. When calling a procedure, you can simply use the procedure name

followed by arguments, which are separated by commas:

When you create and use a function, the return value of the function is

held by a variable with the name of the function

The message box is one of the most useful functions in VBScript. The

two types of message boxes available to you are the message box and the input

box.

String Functions

Asc Chr InStr Startpos

String1 String2 Type LCase

Left LTrim Mid Right

RTrim Str() StrComp String

Trim UCase Val

Conversion Functions

CByte CDbl CInt CLng

CStr CVErr

 294

Math Functions

Abs Array Atn Exp

Hex Int Fix Log

Oct Rnd Sgn Sqr

Sin Tan

Time and Date Functions

Date DateSerial DateValue Day

Hour Year Weekday Minute

Month Now Second Time

TimeSerial TimeValue

Classes and Objects

Objects encapsulate (i.e., wrap together) data (attributes) and methods

(behaviors); the data and methods of an object are intimately related. Objects

have the property of information hiding.

In VBScript, the unit of object-oriented programming is the Class from

which objects are instantiated (i.e., created). Methods are VBScript procedures

that are encapsulated with the data they process within the “walls” of classes.

VBScript programmers can create their own user-defined types called classes.

Classes are also referred to as programmer defined types. Each class contains

data as well as the set of methods that manipulate the data. The data

components of a class are called instance variables. Just as an instance of a

Variant is called a variable, an instance of a class is called an object.

This kind of software reusability speeds the development of powerful,

high-quality software. Rapid applications development (RAD) is of great

interest today. Packaging software as classes out of which we make objects

makes more significant portions of major software systems reusable. On the

Windows platform, these classes have been packaged into class libraries, such

as Microsoft’s MFC (Microsoft Foundation Classes), that provide C++

 295

programmers with reusable components for handling common programming

tasks, such as the creating and manipulating of graphical user interfaces.

Classes often provide Public methods to allow clients of the class to set

(i.e., assign values to) or get (i.e., obtain the values of) Private instance

variables. These methods are special methods in VBScript called Property Let,

Property Set and Property Get (collectively these methods and the internal

class data they manipulate are called properties).

Procedures Property Let and Property Set differ in that Property Let is

used for nonobject subtypes (e.g., integer, string, byte) and Property Set is used

for object subtypes.

14.12. Lesson end Activities

1. What is the different between function and procedure?

2. List the Built-in function in VBScript.

14.13. Check your progress

1. Write a programe to implement class in VBScript.

2. What are the string functions available in VBScript?

14.14. Reference

1. Internet & World Wide Web, H.M. Deitel, P.J.Deitel and A.B.Goldberg,

 Prentice Hall.

2. www.microsoft.com

 296

 297

Lesson 15

Active Server Pages – I

Contents

15.0. Aim and Objective

15.1. Introduction

15.2. How ASP works?

15.3. Client Side Scripting Vs Server Side Scripting

15.4. Configuring your web server for ASP

15.5. Active Data Objects

15.6. Accessing Files on Server

15.7. Session and Cookies

15.8. Let us Sum Up

15.9. Lesson end Activities

15.10. Check your Progress

15.11. Reference

15.0. Aim and Objects

• To learn ASP for web page development

• To understand client side and server side scripting

• To understand Active Data Objects

• To understand session and cookies

15.1. Introduction

Active Server Pages are browser independent. The browser only sees pure

HTML pages; no vendor proprietary programs or extensions are needed for

customers to use ASP applications. ASP is easy to learn. ASP hides the code

from the customer (and the hacker). ASP gives an efficient link to the many

databases that comply with the Open Database Connection (ODBC) standard.

 298

15.2. How ASP works?

The Internet Information Server (IIS) versions 3.0, IIS version 4.0 and the

Personal Web Server (PWS) can process active server pages. The server knows

that ASP code is in the file from the ASP extension. ASP is included in

Microsoft's Internet Information Server (IIS). ASP runs as an add-on dll to

Microsoft's Personal Web Server.

ASP Delimiters are much like HTML:

<% Code %>

By default the code used to write ASPs is VBScript but Javascript, PERL

or C++ can be used. The default language is set in the server's NT operating

system registry by the server management software.

For Javascript If statements:

<SCRIPT LANGUAGE=Javascript RUNAT=Server>If (iPrice=2)

Buy="Yes"</script>

or

<%@ LANGUAGE=Javascript %>

<% If (iPrice=2) Buy="Yes" %>

or

<% If (iPrice=2) %>

You should buy.

<% Else %>

Don't buy that!

VBScript is a "lightweight" subset of Visual Basic with limitations

imposed for reasons of security, portability, and performance. VBScripts can't

read from or write to local drives or make system calls. Visual Basic and VB

Script are Microsoft languages and work only with Microsoft products.

Microsoft's guide to VBScript is at http://www.microsoft.com/vbscript

15.3. Client Side Scripting VS Server Side Scripting

One can add smarts to web pages using either client side or server side

processes. The client side is the customer's browser such as Netscape Navigator

or Microsoft Internet Explorer. The server side processes are performed on the

 299

hypertext or web server - be it a personal computer or a mainframe computer.

Common Gateway Interface (CGI) and perl scripts are server side processes. The

variables are collected from the web page and passed via the CGI to the server

where it is processed by perl scripts . Javascript (not to be confused with Java)

and VBScript are computer languages that typically execute on the client side

(i.e. in the browser). Unlike CGI, these scripts are on the same page as HTML. A

block of ASP code, some HTML, some more code, etc.

Active Server Pages (ASP) is an object-based server-side scripting

environment. Both VBScript and JavaScript can be used for server-side

scripting under ASP. However, the referred language for server-side scripting is

usually VBScript. Client-side and server-side scripting code can be used within

the same page.

The web server must be setup to allow script or execute permissions on

the virtual directory where the ASP code will reside. The file containing the ASP

code must have .asp extension otherwise the web server does not process the

server-side script code.

The server-side script code uses <% and %> tags to identify the code

that will get executed on the server. The scripting language in this case is the

default language set up on the server.

It is a good practice to identify the server-side scripting language for each

page by including a statement at the top of the page as shown below:

<% @ LANGUAGE=VBScript %>

The server-side scripting language can be changed for functions/subs

within a page by using the SCRIPT tag along with RUNAT=SERVER

identification.

<SCRIPT LANGUAGE=JavaScript RUNAT=SERVER>

 …..

 ……

</SCRIPT>

 300

Example:

<!-- Serversc1.asp -->

<% @ LANGUAGE=VBScript%>

<HTML>

 <HEAD>

 <TITLE> Server side scripting - Reporting the Date and Time on the

Server </TITLE>

 </HEAD>

 <BODY>

 <H2> <CENTER> Server Side Scripting </CENTER> </H2>

 <H3> <CENTER> Date and Time on the server =

<%

 dim t1

 t1 = now

 Response.write t1

%>

 </CENTER></H3>

 <HR>

 </BODY>

</HTML>

 301

Note that if you save the Serversc1.asp file in the previous example as

Serversc1.htm, and retrieve it from your browser, the web server does not

execute the server-side script code and passes it as is to the Client browser.

<!-- Serversc1.htm -->

<% @ LANGUAGE=VBScript%>

<HTML>

 <HEAD>

 <TITLE> Server side scripting - Reporting the Date and Time on the

Server </TITLE>

 </HEAD>

 <BODY>

 <H2> <CENTER> Server Side Scripting </CENTER> </H2>

 <H3> <CENTER> Date and Time on the server =

<%

 dim t1

 t1 = now

 Response.write t1

%>

 </CENTER></H3>

 <HR>

 </BODY>

</HTML>

 302

A file containing server-side script code must have the extension .asp.

Change the file name back to Serversc1.asp and examine it in the

browser. Then try to view the source from the browser, you will note that the

server-side script code is not visible to the browser, it only gets the HTML

statements.

Result of View -> Source from the browser when the Serversc1.asp file is being

viewed.

<!-- Serversc1.asp -->

<HTML>

 <HEAD>

 <TITLE> Server side scripting - Reporting the Date and Time on the

Server </TITLE>

 </HEAD>

 <BODY>

 <H2> <CENTER> Server Side Scripting </CENTER> </H2>

 <H3> <CENTER> Date and Time on the server =

4/8/00 6:49:57 AM

 </CENTER></H3>

 <HR>

 </BODY>

</HTML>

15.4. Configuring your Web Server for Active Server Pages

Personal Web Server

 In order to run Active Server Page code, you must have one of Microsoft's

Web Server products installed. Microsoft's primary web server product is

"Internet Information Server" (IIS) which is a rather large application designed

to run on Windows NT or Windows 2000 based Internet web servers. It is

normally not run in a desktop PC where you would typically do the development

of your web pages. To make the task of developing and testing web pages easier,

a scaled down version of IIS called Personal Web Server (PWS) is available from

 303

Microsoft that can be run on any Windows 95, 98, NT or 2000 workstation.

PWS does not require any connection to the Internet therefore you can do all

your development and testing off-line.

Installation:

To Install PWS on Windows 98:

1. insert your Windows 98 operating system CD into your CD-ROM drive.

2. Click on the Start button and choose Run.

3. In the Run Dialog box type X:\add-ons\pws\setup.exe (where X is the drive

letter of your CD-ROM drive) and click OK.

4. Follow the instructions on the screen to install PWS.

Internet Information Server

Microsoft Internet Information Server (IIS) is a web server that integrates into

the Windows NT Server. IIS allows you to publish information on the World

Wide Web and to run multiple business applications using ASP.

Installation

Make sure you have Service Pack 3 (or higher) and Microsoft Internet Explorer

4.01 (or higher - recommended) installed on your Windows NT Server before you

install the Windows NT 4.0 Option Pack. It is recommended that you apply

Service Pack 4 for Windows NT after installing IIS. Note: You must reapply

Service Pack 4 to your computer when you install a new component of the

Windows NT operating system or the Windows NT 4.0 Option Pack.

Getting Started

Before jumping straight into Server Side Scripting for the TALtech ActiveX Plus,

we recommend testing your web server to make sure that it is correctly

configured to work with Active Server Pages (ASP). Some older versions of PWS,

such as the one installed with Microsoft FrontPage 98 (AKA "FrontPage Web

Server") do not install support for ASP by default. If your Personal Web Server

looks like this:

 304

Then you may wish to upgrade it. Below is a simple ASP file that can be used to

test the server.

Copy and Paste the code below into Notepad. Save the file as Test1.asp

into the home directory of the default Web site that was installed with PWS or

IIS (Usually C:\Webshare\wwwroot or C:\InetPub\wwwroot by default.

<HTML><BODY>

Output:

<%

intS = 60*60

%>

There are

<%

Response.Write intS

%>

seconds in an hour.

</BODY></HTML>

 305

You can access the ASP page Test1.asp by typing the following URL in your Web

Browser: http://localhost/Test1.asp

You should see:

Output:

There are 3600 seconds in an hour.

15.5. Active Data Objects

Objects are the building blocks of Java, Javascript, Visual Basic and other

object oriented languages. Objects have:

• Properties or attributes - are the characteristics of the object

• Methods - are the tricks the object can do

• Events - are when the object does its tricks

The server uses the Active Data Object (ADO), an Active-X object that

handles all the data from server to browser. The ADO has various drivers for

different databases and can work with any ODBC database.

There are six built-in ASP objects that simplify web development. These are:

 Application

 Session

 ObjectContext

 Request

 Response

 Server

ASP has several built in Objects. The five Objects we will learn about here are:

1. Application objects - for managing information for a web application created

with ASP. Applications objects are for the application as a whole and start when

the web server starts. Application objects are defined in the global.asa file.

2. Session objects - for managing information concerning the user's current

Web session. Session objects last for the time a user is on the site. Session

objects are created when individuals enter the application and continue until

the timeout occurs. Session objects can be defined in any file including the

global.asa file

 306

3. Response objects - for sending information to the client or user

4. Request objects - for receiving information from the user

5. Server objects - for providing information about the server.

In addition to these Server-side Objects, ASP has a number of Server-

side Components. Components are objects that one must explicitly add to the

ASP application. The one we will focusing on is the Database Access Objects

(DAO) and ActiveX Data Objects (ADO).

Response and Request Objects

The Response Object has the following Methods:

Response.Write("Hello World!")

' This is a comment

<%= "Bam" %>

Response.Redirect("new_page.asp")

Response.Cookies("Name") = "1234, etc."

Response.Cookies("Name").Expires = Now()+7 (or date)

Request Methods:

request.form("txtName")

request.cookies("Name")

Request.ServerVariables("SERVER_NAME")

Server Method:

Server.CreateObject("VBObject.Class")

The list we will use the most are Response.Write and Request.form.

You can embeded HTML tags inside the ASP Response.write method to

format the output e.g., if you wanted the date and time on the server to appear

on the next line, you would change the Response.write statement as:

Response.write "
" & t1

<%= variable or expression %> replaces the value of variable or

expression and sends it to the browser.

Example:

<!-- Serversc3.asp -->

<% @ LANGUAGE=VBScript%>

 307

<HTML>

 <HEAD>

 <TITLE> Server side scripting - Reporting the Date and Time on the

Server </TITLE>

 </HEAD>

 <BODY>

 <H2> <CENTER> Server Side Scripting </CENTER> </H2>

 <H3> <CENTER> Date and Time on the server = <%= now %>

 </CENTER></H3>

 <HR>

 </BODY>

</HTML>

Response.expires

By placing <% Response.expires = 0 %>, you can indicate to the browser

not to cache the page. This way the time will be obtained from the server each

time the user comes to this page.

<% @ LANGUAGE=VBScript%>

<% Response.expires=0 %>

<!-- Serversc5.asp -->

<HTML>

 <HEAD>

 <TITLE> Server side scripting - Reporting the Date and Time on the

Server </TITLE>

 </HEAD>

 <BODY>

 <H2> <CENTER> Server Side Scripting </CENTER> </H2>

<%

 dim t1

 t1 = now

%>

 <H3> <CENTER> Date and Time on the server = <%= t1 %>

 308

 </CENTER></H3>

 <HR>

 </BODY>

</HTML>

If you try viewing the above page in your browser, you will get an error message:

The reason for the error is that the Response.expires= should be

specified before any HTML content is sent to the page i.e., this needs to be in

the header section in the response. So the HTML comment line which appears

two lines before <% Response.expires=0 %> is the source of the problem. Modify

the first few lines of the page as shown below:

<% @ LANGUAGE=VBScript%>

<% Response.expires=0 %>

<!-- Serversc5.asp -->

Now try viewing this page and retyping part of the url to see if the time is

correctly updated.

You can also specify a relative or absolute time for the page to expire in

the cache of the browser, e.g.,

Response.expires=60 page expires in 60 minutes

Response.ExpiresAbsolute=#6/1/2000 06:30:00#

Or

Response.ExpiresAbsolute=#June 1, 2000 06:30:00#

 309

<SCRIPT RUNAT=SERVER> tag is used to define a function or sub that

will be executed on the web server. This tag is particularly useful in mixing

different scripting languages on the server.

Example: Change the Serversc5.asp file as shown below.

<% @ LANGUAGE=VBScript%>

<% Response.expires=0 %>

<!-- Serversc6.asp -->

<HTML>

 <HEAD>

 <TITLE> Server side scripting - Reporting the Date and Time on the

Server </TITLE>

 </HEAD>

 <BODY>

 <H2> <CENTER> Server Side Scripting </CENTER> </H2>

<SCRIPT LANGUAGE=VBSCRIPT RUNAT=SERVER>

 dim t1

 t1 = now

</SCRIPT>

 <H3> <CENTER> Date and Time on the server = <%= t1 %>

 </CENTER></H3>

 <HR>

 </BODY>

</HTML>

Try viewing the above file in your browser and you will see that it does

not show any date and time. Now modify the above file to create a function that

will return date and time as shown below:

<% @ LANGUAGE=VBScript%>

<% Response.expires=0 %>

<!-- Serversc7.asp -->

<HTML>

 310

 <HEAD>

 <TITLE> Server side scripting - Reporting the Date and Time on the

Server </TITLE>

 </HEAD>

 <BODY>

 <H2> <CENTER> Server Side Scripting </CENTER> </H2>

<SCRIPT LANGUAGE=VBSCRIPT RUNAT=SERVER>

 Function ServerDateTime()

 dim t1

 t1 = now

 ServerDateTime = t1

 End Function

</SCRIPT>

 <H3> <CENTER> Date and Time on the server = <%= ServerDateTime

%>

 </CENTER></H3>

 <HR>

 </BODY>

</HTML>

<SCRIPT LANGUAGE=VBSCRIPT RUNAT=SERVER> should be used to identify

server-side functions and subs.

Example of mixing Server-side scripting languages:

<% @ LANGUAGE=VBScript %>

<% Response.expires=0 %>

<!-- Serversc8.asp -->

<HTML>

 <HEAD>

 <TITLE> Server side scripting - Mixing Languages </TITLE>

 </HEAD>

 311

 <BODY>

<SCRIPT LANGUAGE=VBSCRIPT RUNAT=SERVER>

 Function ServerDateVBS()

 dim t1

 t1 = now

 ServerDateVBS = t1

 End Function

</SCRIPT>

<SCRIPT LANGUAGE=JAVASCRIPT RUNAT=SERVER>

 function ServerDateJS() {

 var t1;

 t1 = new Date();

 return t1;

 }

</SCRIPT>

 <H3> Date and Time on the server (VBS function) = <%

=ServerDateVBS %> </H3>

 <HR>

 <H3> Date and Time on the server (Javascript function) = <%=

ServerDateJS() %> </H3>

 </BODY>

</HTML>

 312

Server-side Includes – reusable code blocks

 When a web site involves quite a bit of script code, it is always a good

idea to break the program into several files. Commonly used functions and subs

can be placed in a file and this file can be included where ever these

functions/subs are needed.

<!--#INCLUDE FILE=filename --> or <!--#INCLUDE VIRTUAL=filename -->

Virtual indicates the file relative to the virtual web server directory.

Example: Create a function called greeting and place it in the greet.inc file in the

include subdirectory as shown below.

<!-- greet.inc.txt -->

<SCRIPT LANGUAGE=VBSCRIPT RUNAT=SERVER>

Function greeting()

 dim t1, strMsg

 t1 = now

 If Hour(t1) < 12 Then

 strMsg="Good Morning"

 ElseIf Hour(t1) < 18 Then

 strMsg="Good Afternoon"

 Else

 strMsg = "Good Evening"

 End If

 greeting = strMsg

End Function

</SCRIPT>

<% @ LANGUAGE=VBScript %>

<% Response.expires=0 %>

<!-- Serversc9.asp -->

<HTML>

 <HEAD>

 313

 <TITLE> Server side scripting - Server-side Includes </TITLE>

 </HEAD>

 <BODY bgcolor="aqua">

<!-- #INCLUDE FILE="include/greet.inc.txt" -->

 Greetings from the server:

 <%= greeting %>

 <HR>

 </BODY>

</HTML>

Security Concern: Try viewing the include file directly in the browser i.e., type

the url as:

http://localhost/MyWeb/include/greet.inc.txt

Even though you will not be able to view anything in the page, if you try

to view the source (View->source from the browser menu), you will be able to

see the ASP function code. In some practical situations, we may not want the

client to be able to take a look at our ASP code, hence any extension other than

an .asp for the INCLUDE files does not protect your ASP code from the client.

 All INCLUDE files should have the extension .asp.

 314

Rename the greet.inc.txt file to greet.asp and also make the corresponding

change in the Serversc9.asp file as:

<!-- #INCLUDE FILE="include/greet.asp" -->

Now the client browser cannot see the code in the greet.asp file even if

this file is viewed in the browser directly.

Response.expires=0 revisited

Response.expires=0 causes the browser to not to cache the web page.

This may be important for periodically changing data in the page such as server

time, or stock quotes etc.. However, from performance point of view, setting

expires=0 also causes a refetch of the page from the server. If the page involves

a little dynamic data but quite a bit of images that do not change over time,

then the page loading could become slow.

It is possible to break the page into a few different asp files some having

a setting of Response.expires=0 and some with a greater expiration time. The

asp files are not included by an #INCLUDE statement but rather by a client-

side JavaScript SRC statement.

Example:

<% @ LANGUAGE=VBScript%>

<% Response.expires=0 %>

<!-- Serversc10.asp -->

<HTML>

 <HEAD>

 <TITLE> Server side scripting - Date and Time on the Server </TITLE>

 </HEAD>

 <BODY>

 <H2> <CENTER> Server Side Scripting </CENTER> </H2>

<%

 dim t1

 t1 = now

%>

 315

 <H3> This part of the page is not cached </H3>

 <H3> <CENTER> Date and Time on the server = <%= t1 %>

 </CENTER></H3>

 <HR>

 This is an image file which will be cached for some time:

<SCRIPT LANGUAGE=JAVASCRIPT SRC="IMG.asp">

</SCRIPT>

 </BODY>

</HTML>

<% Response.expires=1 %>

<!-- IMG.asp -->

document.writeln(" Time at which image sent from server = <%=time%>");

document.writeln('');

Setting Page expiration relative to current time on the server.

Example:

<% @ LANGUAGE=VBScript%>

<%

 dim exp1

 exp1 = DateAdd("n",1,now) 'n specifies minutes, m specifies month

 316

 Response.ExpiresAbsolute=exp1

%>

<!-- Serversc11.asp -->

<HTML>

 <HEAD>

 <TITLE> Server side scripting - Setting page expiration relative to

current time </TITLE>

 </HEAD>

 <BODY>

 <H2> <CENTER> Server Side Scripting </CENTER> </H2>

<SCRIPT LANGUAGE=VBSCRIPT RUNAT=SERVER>

 Function ServerDateTime()

 dim t1

 t1 = now

 ServerDateTime = t1

 End Function

</SCRIPT>

 <H3> <CENTER> Date and Time on the server = <%

Response.write(ServerDateTime()) %>

 </CENTER></H3>

 <HR>

 <% Response.write("Page Expiration set at: " & exp1) %>

 </BODY>

</HTML>

 317

Redirecting to another Page

We can use the Response.redirect method to redirect the user to another

page. This is needed quite often when the web site location changes or after the

user accesses a page that requires log-in, the user will be redirected to the log-

in page.

 The Response.redirect is part of the header and thus requires that no

HTML output has been written to the page.

Example:

<% @ LANGUAGE=VBScript%>

<%

 Response.expires=20 '20 minute expiration

 If Hour(now) > 12 Then

 Response.redirect "serversc10.asp"

 else

 Response.redirect "http://www.amazon.com"

 end if

%>

<!-- Serversc12.asp -->

<HTML>

 <HEAD>

 <TITLE> Server side scripting - Response.redirect method </TITLE>

 </HEAD>

 <BODY>

 <H2> <CENTER> Server Side Scripting </CENTER> </H2>

 <H3> <CENTER> Date and Time on the server = <%

Response.write(Now) %>

 </CENTER></H3>

 <HR>

 </BODY>

</HTML>

 318

Buffering Output

Both Response.expires=0 and Response.redirect require that no HTML

content is written before executing them. However, in some dynamic situations,

we may want to change the expiration time or redirecting to a different site. This

can be accomplished by buffering the output by setting Response.buffer=TRUE

If page buffering is on, then expiration can be changed any time later,

even if some HTML content has been written to the buffer but not sent to the

browser.

If the page is being buffered, then it can be sent from the server to the

browser either by executing Response.flush or Response.end method.

Example:

<% @ LANGUAGE=VBScript%>

<%

 Response.buffer=True 'This is required if redirection is needed

 'after some content has been written

 Response.expires=1 '1 minute expiration

%>

<!-- Serversc13.asp -->

<HTML>

 <HEAD>

 <TITLE> Server sside scripting - Response.redirect method </TITLE>

 </HEAD>

 <BODY>

 <H2> <CENTER> Server Side Scripting - Response.redirect </CENTER>

</H2>

<%

 Response.write "We are redirecting you to a different page"

 If Hour(now) < 12 Then

 Response.redirect "serversc5.asp"

 else

 319

 Response.redirect "http://www.amazon.com"

 end if

%>

 <H3> <CENTER> Date and Time on the server = <%

Response.write(Now) %>

 </CENTER></H3>

 <HR>

 </BODY>

</HTML>

Example: Use of flush, clear and end methods of Response object

<% @ LANGUAGE=VBScript%>

<%

 Response.buffer=True

 Response.expires=1 '1 minute expiration

%>

<!-- Serversc14.asp -->

<HTML>

 <HEAD>

 <TITLE> Server side scripting - Response.redirect method </TITLE>

 </HEAD>

 <BODY>

 <H2> <CENTER> Server Side Scripting - Response.redirect </CENTER>

</H2>

<%

 if Hour(Now) < 12 Then 'Try changing the "<" to ">"

 Response.write ("Server time = " & Now & "
")

 Response.write "We are flushing the output so far and ending

response"

 Response.flush

 320

 Response.end 'no further output will be sent

 'actually Response.end flushes the output also

 else

 Response.clear 'all previous output is cancelled

 Response.expires=0

 Response.write("This content expires quickly")

 end if

%>

 <H3> <CENTER> Date and Time on the server = <%

Response.write(Now) %>

 </CENTER></H3>

 <HR>

 </BODY>

</HTML>

Response.ContentType

 This identifies to the browser how the content should be displayed. For

example, if Response.ContentType=”text/plain” then the browser does not

interpret HTML tags. However if the Response.ContentType=”text/html” then

the HTML tags are taken into account. If Response.ContentType=”

application/msword” then the internet explorer displays the page by opening

MS WORD in the browser.

ContentType should be set before sending any content to the browser

i.e., it is a header specification.

Example:

<% @LANGUAGE=VBSCRIPT %>

<% 'Serversc15.asp

 Response.ContentType="text/plain"

 'Change the content type to text/html and view the page

 'to see how html tags are interpreted correctly

 Response.expires=0

%>

 321

 <H1>Welcome to My Musical Page.</H1>

 I enjoy developing Web Applications Using ASP.

 ASP has several COM based prebuilt objects that

 can be used in a scripting language such as VBscript,

 or Javascript, or Perlscript etc..

 ASP is easy to learn and you can create very useful Web

 applications relatively quickly, with it

Try changing the line Response.ContentType="text/plain" to

Response.ContentType=”text/html” and then view it in the browser.

Try changing the ContentType to “application/msword” and view it in the

browser.

 322

Request Object

 One important collection of the request object is ServerVariables which

provides information about the environment variables such as IP address of the

client, length of the posted content, browser information etc..

strSelf = Request.ServerVariables(“SCRIPT_NAME”)

 returns virtual path of the asp page itself

nLength = Request.ServerVariables(“CONTENT_LENGTH”)

 returns length of the posted content (POST method)

Request.ServerVariables(“HTTP_headername”) returns the value of a

particular HTTP header e.g.,

Request. ServerVariables(“HTTP_USER_AGENT”) returns the browser

name and platform on which it is running.

Request. ServerVariables(“HTTP_REFERER”) returns the url of the web

page that invoked this asp page.

Request. ServerVariables(“REMOTE_ADDR”) returns the client’s IP

address.

You can determine all HTTP headers sent from the browser by executing

the following code:

<%= Replace(Request. ServerVariables(“ALL_RAW”), vbCrLf,”
”) %>

 323

Example:

<% @ LANGUAGE=VBSCRIPT %>

<% 'Serversc16.asp %>

<HTML>

 <HEAD>

 <TITLE>

 Test of HTTP headers determined from the Request Object

 </TITLE>

 <HEAD>

 <BODY>

 <H2> Some HTTP headers as determined from the Request object </H2>

<%

 strSelf = Request.ServerVariables("SCRIPT_NAME")

 Response.write("My page URL is: " & strSelf)

 strBinfo = Request. ServerVariables("HTTP_USER_AGENT")

 Response.write("
Browser name and platform is: " & strBinfo)

 strClientIP = Request. ServerVariables("REMOTE_ADDR")

Response.write("
Client browser machine's IP address is: " &

strClientIP) %>

 <HR>

 </BODY>

</HTML>

 324

GET and POST methods for Submitting Forms to the Server

GET method

 When GET method is used to submit a FORM to the server, the server

script can use the Request.querystring collection to determine the values of

different fields. In the GET method, querystring is appended to the URL when

the form is submitted. Each element in the form is identified by its name=value.

The different elements are separated by & e.g., an ID and password form when

submitted using the GET method will have the following querystring:

http://mango/HTMLEx/Serversc17a.asp?USERID=965&PASSWORD=45&cmd

Login=Login

The value of querystring can be determined by:

 Request.ServerVariables(“QUERY_STRING”)

Example:

<% @LANGUAGE=VBSCRIPT %>

<% 'Serversc17.asp %>

<HTML>

 <HEAD>

 <TITLE> GET method to Submit a FORM</TITLE>

 </HEAD>

 <BODY>

 <H2> Web Site Logon </H2>

 <H3> Please Specify User ID and Password</H3>

 <HR>

 <FORM method=GET ACTION="Serversc17a.asp">

User ID: <INPUT NAME="USERID" SIZE="5" MAXLENGTH="5"

VALUE="673">

Password: <INPUT TYPE="password" NAME="PASSWORD" SIZE="8"

MAXLENGTH="8" VALUE="">

 <INPUT TYPE=SUBMIT VALUE="Login" NAME=cmdLogin>

 <HR>

 </FORM>

 </BODY>

 325

</HTML>

<% @LANGUAGE=VBSCRIPT %>

<% 'Serversc17a.asp %>

<HTML>

 <HEAD>

 <TITLE> Reading the Query String</TITLE>

 </HEAD>

 <BODY>

 <H2> User ID and Password </H2>

 <HR>

<%

 Response.write("UserID submitted = " &

Request.querystring("USERID"))

 Response.write("
Password submitted = " &

Request.querystring("PASSWORD"))

%>

 </BODY>

</HTML>

 326

The target of a GET or POST method can be the page itself, e.g. the above

program can be modified as:

<% @LANGUAGE=VBSCRIPT %>

<% 'Serversc18.asp %>

<HTML>

 <HEAD>

 <TITLE> GET method to Submit a FORM</TITLE>

 </HEAD>

 <BODY>

 <H2> Web Site Logon </H2>

 <HR>

<% If Request.ServerVariables("QUERY_STRING") = "" Then %>

 <H3> Please Specify User ID and Password</H3>

 <FORM method=GET ACTION="Serversc18.asp">

User ID: <INPUT NAME="USERID" SIZE="5" MAXLENGTH="5"

VALUE="673">

Password: <INPUT TYPE="password" NAME="PASSWORD" SIZE="8"

MAXLENGTH="8" VALUE="">

 <INPUT TYPE=SUBMIT VALUE="Login" NAME=cmdLogin>

 <HR>

 </FORM>

<% Else

 327

 Response.write("UserID submitted = " &

Request.querystring("USERID"))

 Response.write("
Password submitted = " &

Request.querystring("PASSWORD"))

 End If

%>

 </BODY>

</HTML>

It is a good practice to not to hard code the asp page name in the FORM’s

ACTION attribute. Instead, you should use the

Rquest.ServerVariables(“SCRIPT_NAME”).

Change the following line in the above program:

<FORM method=GET ACTION="Serversc18.asp"> to

<FORM method=GET ACTION=

“<%=Request.ServerVariables(“SCRIPT_NAME”)%>”>

POST method

GET method allows only 2KB of data to be appended to the querystring.

If data submitted from a form is larger, then use the POST method. In the POST

method, use Request.ServerVariables("CONTENT_LENGTH") to determine if the

form has been filled or not. Also use Request.Form(“element name”) to obtain

the value of an HTML form element.

Example:

<% @LANGUAGE=VBSCRIPT %>

<% 'Serversc19.asp %>

<HTML>

 <HEAD>

 <TITLE> POST method to Submit a FORM</TITLE>

 </HEAD>

 <BODY>

 <H2> Web Site Feedback </H2>

 328

 <HR>

<% If Request.ServerVariables("CONTENT_LENGTH") = 0 Then %>

 <H3> Please Enter Name, UserID and some Comments </H3>

 <FORM method=POST ACTION=

"<%=Request.ServerVariables("SCRIPT_NAME")%>">

 <PRE>

Name: <INPUT NAME="txtName" SIZE="20" MAXLENGTH="20"

VALUE="">

User ID: <INPUT NAME="txtID" SIZE="10" MAXLENGTH="10" VALUE="">

 Comments: <TEXTAREA NAME=txaComments ROWS=5

COLS=40></TEXTAREA>

 <INPUT TYPE=SUBMIT VALUE="Submit Post Form"

NAME=cmdSubmit>

 <HR>

 </PRE>

 </FORM>

<% Else

 Response.write("Name submitted = " & Request.Form("txtName"))

 Response.write("
User ID submitted = " & Request.Form("txtID"))

 strComm = Replace(Request.Form("txaComments"),vbcrlf,"
")

 Response.write("
" & strComm)

 End If

%>

 </BODY>

</HTML>

 329

Data validation can be done on the client side before submitting the form.

<% @LANGUAGE=VBSCRIPT %>

<% 'Serversc20.asp %>

<HTML>

 <HEAD>

 <TITLE> POST method to Submit a FORM</TITLE>

 </HEAD>

<SCRIPT LANGUAGE=VBSCRIPT>

<!--

 Sub cmdSubmit_OnClick()

 If (Trim(frmFB.txtName.value) = "") OR (Trim(frmFB.txtID.Value) = "")

Then

 MsgBox("You must enter a Name and ID before submitting form")

 window.event.returnvalue=False

 End If

 End Sub

-->

</SCRIPT>

 330

 <BODY>

 <H2> Web Site Feedback </H2>

 <HR>

<% If Request.ServerVariables("CONTENT_LENGTH") = 0 Then %>

 <H3> Please Enter Name, UserID and some Comments </H3>

<FORM NAME=frmFB method=POST ACTION=

<%=Request.ServerVariables("SCRIPT_NAME")%>">

 <PRE>

Name: <INPUT NAME="txtName" SIZE="20" MAXLENGTH="20"

VALUE="">

User ID: <INPUT NAME="txtID" SIZE="10" MAXLENGTH="10" VALUE="">

 Comments: <TEXTAREA NAME=txaComments ROWS=5

COLS=40></TEXTAREA>

 <INPUT TYPE=SUBMIT VALUE="Submit Post Form"

NAME="cmdSubmit">

 <HR>

 </PRE>

 </FORM>

<% Else

 Response.write("Name submitted = " & Request.Form("txtName"))

 Response.write("
User ID submitted = " & Request.Form("txtID"))

 strComm = Replace(Request.Form("txaComments"),vbcrlf,"
")

 Response.write("
" & strComm)

 End If %>

 </BODY>

</HTML>

 331

15.6. Accessing Files on the Server

 ASP provides an ActiveX component called “Scripting.FileSystemObject”

for accessing files, folders and drives on the server.

Scripting.FileSystemObject provides a few important methods to create

files, open existing files for reading or writing e.g., CreateTextFile and

OpenTextFile methods. These methods end up creating an object called

TextStream object which has several methods for reading or writing data to a

file e.g., Read, ReadLine, ReadAll, Write, Writeln, Close.

TextStream object provides two important properties to determine the

end of line or end of file when reading data from a file (AtEndOfLine,

AtEndOfStream).

The following table shows the format of the file object.

FileSystemObject.OpenTextFile(fname,mode,create,format)

Parameter Description

fname Required. The name of the file to open

mode Optional. How to open the file

1=ForReading - Open a file for reading. You cannot write to

this file.

2=ForWriting - Open a file for writing.

8=ForAppending - Open a file and write to the end of the file.

create Optional. Sets whether a new file can be created if the

filename does not exist. True indicates that a new file can be

created, and False indicates that a new file will not be created.

False is default

Format Optional. The format of the file

0=TristateFalse - Open the file as ASCII. This is default.

-1=TristateTrue - Open the file as Unicode.

-2=TristateUseDefault - Open the file using the system default.

 332

The following code creates a text file (c:\test.txt) and then writes some text to

the file:

Change the file name from c:\test.txt to your virtual path in a shared

hosting environment; use this code as your file path instead,

server.mappath("/test.txt").

<%

dim fs,fname

set fs=Server.CreateObject("Scripting.FileSystemObject")

set fname=fs.CreateTextFile("c:\test.txt",true) 'change to virtual path

in shared hosting environment

fname.WriteLine("Hello World!")

fname.Close

set fname=nothing

set fs=nothing

%>

The following code is to check if a file exists.

<%

Set fs=Server.CreateObject("Scripting.FileSystemObject")

If (fs.FileExists(server.mappath("/test.txt")))=true Then

 Response.Write("File exists.")

Else

 Response.Write("File does not exist.")

End If

set fs=nothing

%>

The following code is to get a files extension.

<%

Set fs=Server.CreateObject("Scripting.FileSystemObject")

Response.Write("The file extension of the file is: ")

Response.Write(fs.GetExtensionName(server.mappath("/test.txt")))

set fs=nothing

%>

 333

The following code is to read from a file.

<%

' create the fso object

set fso = Server.Createobject("Scripting.FileSystemObject")

path = server.mappath("/test.txt")

' open the file

set file = fso.opentextfile(path, 1) <-- For reading

do until file.AtEndOfStream

Response.write("Name: " & file.ReadLine & " ")

Response.write("Home Page: " & file.ReadLine & " ")

Response.write("Email: " & file.ReadLine & "<p>")

loop

' close and clean up

file.close

set file = nothing

set fso = nothing

%>

15.7. Session and Cookies

You can store information in Session object only if the browser supports

Cookies or if the support for cookies has not been turned off. When a browser is

started, a unique Session ID is created and stored in the browser as a session

cookie. This session ID is submitted automatically to the web server on each

request. The session values stored in the session object are unique for each

user and cannot be shared between different users (clients). If sharing of

information is needed between different users, then use the Application object

to create truly global variables. The application level variables should be

protected by Lock and Unlock methods when modifications are needed.

ASP Session

 The Session Object in ASP is a great tool for the modern web site. It

allows you to keep information specific to each of your site's visitors.

Information like username, shopping cart, and location can be stored for the life

 334

of the session so you don't have to worry about passing information page to

page.

 In old web page designs you might have to try to pass information this

information through HTML Forms or other methods.

ASP Session Object

 Contained within the Session Object are several important features that

we will talk about in this lesson. The most important thing to know about ASP's

Session Object is that it is only created when you store information into the

Session Contents collection. We will now look into creating and storing

information in an ASP Session.

ASP Session Variables

 To store a Session Variable you must put it into the Contents collection,

which is very easy to do. Here we are saving the Time when someone visited

this page into the Session Contents collection and then displaying it .

ASP Code:

<%

'Start the session and store information

Session("TimeVisited") = Time()

Response.Write("You visited this site at: " & Session("TimeVisited"))

%>

Display:

 You visited this site at: 11:35:30 AM

 Here we are creating two things actually: a key and a value. Above we

created the key "TimeVisited" which we assigned the value returned by the

Time() function. Whenever you create a Session Variable to be stored in the

Session Contents collection you will need to make this Key / Value pair.

ASP Session ID

 The ASP Session ID is the unique identifier that is automatically created

when a Session starts for a given visitor. The Session ID is a property of the

Session Object and is rightly called the SessionID property. Below we store the

user's SessionID into a variable.

 335

ASP Code:

<%

Dim mySessionID

mySessionID = Session.SessionID

%>

ASP Session Timeout

 A Session will not last forever, so eventually the data stored within the

Session will be lost. There are many reasons for a Session being destroyed. The

user could close their browser or they could leave their computer for an

extended amount of time and the Session would time out. You can set how long

it takes, in minutes, for a session to time out with the Timeout property.

 Below we set our session to timeout after 240 minutes, which should be

more than enough time for most web sites.

ASP Code:

<%

Session.Timeout = 240

Response.Write("The timeout is: " & Session.Timeout)

%>

Display:

 The timeout is: 240

Note: Timeout is defined in terms of minutes

ASP Cookies

 Like ASP Sessions, ASP Cookies are used to store information specific to

a visitor of your website. This cookie is stored to the user's computer for an

extended amount of time. If you set the expiration date of the cookie for some

day in the future it will remain their until that day unless manually deleted by

the user.

 If you have read through the Sessions lesson you will notice that ASP

Cookies code has several similarities with ASP Sessions.

 336

ASP Create Cookies

 Creating an ASP cookie is exactly the same process as creating an ASP

Session. Once again, you must create a key/value pair where the key will be the

name of our "created cookie". The created cookie will store the value which

contains the actual data.

In this example we will create a cookie named brownies that stores how

many brownies we ate during the day.

ASP Code:

<%

'create the cookie

Response.Cookies("brownies") = 13

%>

ASP Retrieving Cookies

 To get the information we have stored in the cookie we must use the ASP

Request Object that provides a nice method for retrieving cookies we have

stored on the user's computer. Below we retrieve our cookie and print out its

value.

ASP Code:

<%

Dim myBrownie

'get the cookie

myBrownie = Request.Cookies("brownies")

Response.Write("You ate " & myBrownie & " brownies")

%>

Display:

You ate 13 brownies

Note: Be sure you see that when you create a cookie you use Response.Cookies,

but when you retrieve a cookie you use Request.Cookies.

 337

ASP Cookie Expiration Date

 Unlike real life cookies, in ASP you can set how long you want your

cookies to stay fresh and reside on the user's computer. A cookie's expiration

can hold a date; this date will specify when the cookie will be destroyed.

In our example below we create a cookie that will be good for 10 days by first

taking the current date then adding 10 to it.

ASP Code:

<%

'create a 10-day cookie

Response.Cookies("brownies") = 13

Response.Cookies("brownies").Expires = Date() + 10

'create a static date cookie

Response.Cookies("name") = "Suzy Q."

Response.Cookies("name").Expires = #January 1,2009#

%>

ASP Cookie Arrays or Collections

 Up until now we have only been able to store one variable into a cookie,

which is quite limiting if you wanted to store a bunch of information. However,

if we make this one variable into a collection it can store a great deal more.

Below we make a brownies collection that stores all sorts of information.

ASP Code:

<%

'create a big cookie

Response.Cookies("brownies")("numberEaten") = 13

Response.Cookies("brownies")("eater") = "George"

Response.Cookies("brownies")("weight") = 400

%>

ASP Retrieving Cookie Values From a Collection

Now to iterate through the brownies collection we will use a for each

loop. See our for loop tutorial for more information.

 338

ASP Code:

<%

For Each key In Request.Cookies("Brownies")

 Response.Write("
" & key & " = " & _

 Request.Cookies("Brownies")(key))

Next

Response.Cookies("brownies")("numberEaten") = 13

Response.Cookies("brownies")("eater") = "George"

Response.Cookies("brownies")("weight") = 400

%>

Display:

numberEaten = 13

eater = George

weight = 400

15.8. Let us Sum Up

Active Server Pages are browser independent. The browser only sees pure

HTML pages; no vendor proprietary programs or extensions are needed for

customers to use ASP applications. ASP is easy to learn. ASP hides the code

from the customer (and the hacker). ASP gives an efficient link to the many

databases that comply with the Open Database Connection (ODBC) standard.

The Internet Information Server (IIS) versions 3.0, IIS version 4.0 and the

Personal Web Server (PWS) can process active server pages. The server knows

that ASP code is in the file from the ASP extension. ASP is included in

Microsoft's Internet Information Server (IIS). ASP runs as an add-on dll to

Microsoft's Personal Web Server.

ASP Delimiters are much like HTML:

<% Code %>

By default the code used to write ASPs is VBScript but Javascript, PERL

or C++ can be used. The default language is set in the server's NT operating

system registry by the server management software.

 339

Client Side Scripting VS Server Side Scripting

One can add smarts to web pages using either client side or server side

processes. The client side is the customer's browser such as Netscape Navigator

or Microsoft Internet Explorer. The server side processes are performed on the

hypertext or web server - be it a personal computer or a mainframe computer.

Common Gateway Interface (CGI) and perl scripts are server side processes. The

variables are collected from the web page and passed via the CGI to the server

where it is processed by perl scripts . Javascript (not to be confused with Java)

and VBScript are computer languages that typically execute on the client side

(i.e. in the browser). Unlike CGI, these scripts are on the same page as HTML. A

block of ASP code, some HTML, some more code, etc.

Configuring your Web Server for Active Server Pages

Personal Web Server

 Installation:

To Install PWS on Windows 98:

1. insert your Windows 98 operating system CD into your CD-ROM drive.

2. Click on the Start button and choose Run.

3. In the Run Dialog box type X:\add-ons\pws\setup.exe (where X is the drive

letter of your CD-ROM drive) and click OK.

4. Follow the instructions on the screen to install PWS.

Internet Information Server

 Microsoft Internet Information Server (IIS) is a web server that integrates

into the Windows NT Server. IIS allows you to publish information on the World

Wide Web and to run multiple business applications using ASP.

Installation

Make sure you have Service Pack 3 (or higher) and Microsoft Internet

Explorer 4.01 (or higher - recommended) installed on your Windows NT Server

before you install the Windows NT 4.0 Option Pack. It is recommended that you

apply Service Pack 4 for Windows NT after installing IIS. Note: You must

reapply Service Pack 4 to your computer when you install a new component of

the Windows NT operating system or the Windows NT 4.0 Option Pack.

 340

Getting Started

Before jumping straight into Server Side Scripting for the TALtech

ActiveX Plus, we recommend testing your web server to make sure that it is

correctly configured to work with Active Server Pages (ASP). Some older versions

of PWS, such as the one installed with Microsoft FrontPage 98 (AKA "FrontPage

Web Server") do not install support for ASP by default. If your Personal Web

Server looks like this:

Then you may wish to upgrade it. Below is a simple ASP file that can be used to

test the server.

Copy and Paste the code below into Notepad. Save the file as Test1.asp

into the home directory of the default Web site that was installed with PWS or

IIS (Usually C:\Webshare\wwwroot or C:\InetPub\wwwroot by default.

 341

<HTML><BODY>

Output:

<%

intS = 60*60

%>

There are

<%

Response.Write intS

%>

seconds in an hour.

</BODY></HTML>

You can access the ASP page Test1.asp by typing the following URL in

your Web Browser: http://localhost/Test1.asp

You should see:

Output:

There are 3600 seconds in an hour.

Active Data Objects

Objects are the building blocks of Java, Javascript, Visual Basic and other

object oriented languages. Objects have:

• Properties or attributes - are the characteristics of the object

• Methods - are the tricks the object can do

• Events - are when the object does its tricks

The server uses the Active Data Object (ADO), an Active-X object that

handles all the data from server to browser. The ADO has various drivers for

different databases and can work with any ODBC database.

There are six built-in ASP objects that simplify web development. These are:

 Application

 Session

 ObjectContext

 342

 Request

 Response

 Server

ASP has several built in Objects. The five Objects we will learn about here are:

1. Application objects - for managing information for a web application created

with ASP. Applications objects are for the application as a whole and start when

the web server starts. Application objects are defined in the global.asa file.

2. Session objects - for managing information concerning the user's current

Web session. Session objects last for the time a user is on the site. Session

objects are created when individuals enter the application and continue until

the timeout occurs. Session objects can be defined in any file including the

global.asa file

3. Response objects - for sending information to the client or user

4. Request objects - for receiving information from the user

5. Server objects - for providing information about the server.

Accessing Files on the Server

ASP provides an ActiveX component called “Scripting.FileSystemObject”

for accessing files, folders and drives on the server.

Scripting.FileSystemObject provides a few important methods to create

files, open existing files for reading or writing e.g., CreateTextFile and

OpenTextFile methods. These methods end up creating an object called

TextStream object which has several methods for reading or writing data to a

file e.g., Read, ReadLine, ReadAll, Write, Writeln, Close.

TextStream object provides two important properties to determine the

end of line or end of file when reading data from a file (AtEndOfLine,

AtEndOfStream).

The following table shows the format of the file object.

 343

FileSystemObject.OpenTextFile(fname,mode,create,format)

Parameter Description

fname Required. The name of the file to open

mode Optional. How to open the file

1=ForReading - Open a file for reading. You cannot write to

this file.

2=ForWriting - Open a file for writing.

8=ForAppending - Open a file and write to the end of the file.

create Optional. Sets whether a new file can be created if the

filename does not exist. True indicates that a new file can be

created, and False indicates that a new file will not be created.

False is default

Format Optional. The format of the file

0=TristateFalse - Open the file as ASCII. This is default.

-1=TristateTrue - Open the file as Unicode.

-2=TristateUseDefault - Open the file using the system default.

Session and Cookies

You can store information in Session object only if the browser supports

Cookies or if the support for cookies has not been turned off. When a browser is

started, a unique Session ID is created and stored in the browser as a session

cookie. This session ID is submitted automatically to the web server on each

request. The session values stored in the session object are unique for each

user and cannot be shared between different users (clients). If sharing of

information is needed between different users, then use the Application object

to create truly global variables. The application level variables should be

protected by Lock and Unlock methods when modifications are needed.

ASP Session

 344

 The Session Object in ASP is a great tool for the modern web site. It

allows you to keep information specific to each of your site's visitors.

Information like username, shopping cart, and location can be stored for the life

of the session so you don't have to worry about passing information page to

page.

 In old web page designs you might have to try to pass information this

information through HTML Forms or other methods.

ASP Session Object

 Contained within the Session Object are several important features that

we will talk about in this lesson. The most important thing to know about ASP's

Session Object is that it is only created when you store information into the

Session Contents collection. We will now look into creating and storing

information in an ASP Session.

ASP Session Variables

 To store a Session Variable you must put it into the Contents collection,

which is very easy to do. Here we are saving the Time when someone visited

this page into the Session Contents collection and then displaying it .

ASP Session ID

 The ASP Session ID is the unique identifier that is automatically created

when a Session starts for a given visitor. The Session ID is a property of the

Session Object and is rightly called the SessionID property. Below we store the

user's SessionID into a variable.

ASP Session Timeout

 A Session will not last forever, so eventually the data stored within the

Session will be lost. There are many reasons for a Session being destroyed. The

user could close their browser or they could leave their computer for an

extended amount of time and the Session would time out. You can set how long

it takes, in minutes, for a session to time out with the Timeout property.

ASP Cookies

 345

 Like ASP Sessions, ASP Cookies are used to store information specific to

a visitor of your website. This cookie is stored to the user's computer for an

extended amount of time. If you set the expiration date of the cookie for some

day in the future it will remain their until that day unless manually deleted by

the user.

 If you have read through the Sessions lesson you will notice that ASP

Cookies code has several similarities with ASP Sessions.

ASP Create Cookies

 Creating an ASP cookie is exactly the same process as creating an ASP

Session. Once again, you must create a key/value pair where the key will be the

name of our "created cookie". The created cookie will store the value which

contains the actual data.

ASP Retrieving Cookies

 To get the information we have stored in the cookie we must use the ASP

Request Object that provides a nice method for retrieving cookies we have

stored on the user's computer. Below we retrieve our cookie and print out its

value.

ASP Cookie Expiration Date

 Unlike real life cookies, in ASP you can set how long you want your

cookies to stay fresh and reside on the user's computer. A cookie's expiration

can hold a date; this date will specify when the cookie will be destroyed.

In our example below we create a cookie that will be good for 10 days by

first taking the current date then adding 10 to it.

ASP Cookie Arrays or Collections

 Up until now we have only been able to store one variable into a cookie,

which is quite limiting if you wanted to store a bunch of information. However,

if we make this one variable into a collection it can store a great deal more.

Below we make a brownies collection that stores all sorts of information.

ASP Retrieving Cookie Values From a Collection

 346

Now to iterate through the brownies collection we will use a for each

loop. See our for loop tutorial for more information.

15.9. Lesson end Activities

1. What is the different between client side scripting and server side

scripting?

2. What is the purpose of session and cookies?

15.10. Check your progress

1. Write a ASP program to find out the number of persons visited your web

page.

2. Write a ASP program to copy a text file into different directory.

15.11. Reference

1. Internet & World Wide Web, H.M. Deitel, P.J.Deitel and A.B.Goldberg,

Prentice Hall.

2. www.microsoft.com

 347

Lesson 16

ASP – using ODBC

Contents

16.0. Aim and Objective

16.1. Introduction

16.2. ASP and the Open Database Connection

16.3. Typical SQL Commands

16.4. Active Data Objects

16.5.Transactions: Adding, deleting and editing records

16.6. Searching in the Database

16.7. Let us Sum Up

16.8. Lesson end Activities

16.9. Check your Progress

16.10. Reference

16.0. Aim and Objectives

• Connect to databases using the ODBC Data Source Administrator.

• Use the ADO Active-X object to access databases with Active Server

Pages.

• Apply basic SQL and VBScript commands to build datasets to use in web

pages.

• View, Add, Delete, Edit and Search Databases with Active Server Pages.

16.1. Introduction

ASP provide a convenient means to View, Add, Delete, Edit and Search

Databases. Every database has these basic functions. To learn about how to

use Active Server Pages to support a database application on the Web, we will

develop a simple Access database of contact names and address. Most

 348

databases are far more complex than this example, but the fundamental

principles are the same.

16.2. ASP and the Open Database Connection

ADO talks to the database using Structured Query Language (SQL), a

standard language for communicating with relational (tabular) databases. To

see web pages as they are processed, put the server's IP address and the

directory and file name into the location window on the browser.

Setting Up an ODBC Connection using the System DSN

Before we talk about SQL, let's tell ADO about our ODBC connection

between the server and the database.

1. In Settings/Control Panel go to 32bit ODBC icon

2. Select the SYSTEM DSN tab and hit ADD

3. Select Microsoft Access Driver from the list and select Finish

4. The Data Source Name is Contacts

5. Select a database by hitting select and browsing to the database. Hit OK.

The database should not be in the WEBROOT unless customers need to

be able to download the database. The database can be on another

machine as well. Note: the database cannot be open when setting this

up. If the database is sensitive, put it on a machine only reachable by a

non-TCP/IP networking protocol.

6. Hit OK and the connection is made.

Setting Up an ODBC Connection using the File DSN

You can also make an ODBC connection with a file.dsn file and the

appropriate commands in the ASP pages. The advantage is that one need not

have access to the web server console to create the ODBC connection. Secondly,

one can readily change the database location by simply changing the code. One

can use the console ODBC program to create file.dsn files for a variety of ODBC

compatible database. This example is for Microsoft Access database.

 349

16.3. Typical SQL Commands

The SQL commands that we will be using are:

SELECT

SELECT tells ADO what fields to retrieve from which table. For example:

SELECT * FROM TableName

WHERE

WHERE limits what data is selected. An asterix means all elements

(columns) in the database.

SELECT * FROM TableName WHERE FieldName = 'Value'

ORDER BY

ORDER BY sorts what is returned.

SELECT * FROM TableName WHERE FieldName > 50 or FieldName <

100 ORDER BY FieldName2, FieldName3

INSERT INTO

INSERT INTO adds a new record to the table.

INSERT INTO TableName (FieldName1, FieldName2) VALUES ('Value1',

'Value2')

DELETE FROM

DELETE FROM deletes records from the table.

DELETE FROM TableName WHERE FieldName = 'Value'

UPDATE

UPDATE changes the values of particular fields of the table

UPDATE TableName SET FieldName = 'New Value' WHERE FieldName2 =

'Value2'

UPDATE ComicCollection SET StreetValue = StreetValue + 10 WHERE

Title = 'X-men'

LIKE

LIKE used to search through records

SELECT * FROM TableName Where FieldName LIKE '%%Value%%'

 350

Wild Card Characters!

The % (percent sign) indicates there can be characters before or after the

value.

16.4. Active Data Objects

Thanks to the ODBC connection, the web server knows the database is

there. Now we to get the data and do something useful with it. We employ the

Active Data Objects (ADO) and SQL together to create a record set drawn from

the database. The record set is then used to create the HTML page. A record

set is like a temporary table that stores what is requested through the SQL

command.

We will use Active Data Objects or ADO to create data objects the server

can use. We use ADO to identify the database and the ODBC connection to use

and what SQL command to use. We create the object, establish a connection to

a database, define a SQL command and then execute the SQL command. By

starting with the SQL Command first; the rest of the page will follow from it.

16.5. Transactions : Adding, Deleting and Editing Records

The links for searching, adding, deleting and editing pages should be

located at the bottom of the page that displays individual record information.

Each of these processes is going to have a separate page. They will all be Active

Sever Pages so we will name them add.html, search.html, edit.asp, and

delete.asp. The URL to links to add.html and search.html are nothing

unexpected. With edit and delete though there is one record that we want to

delete or edit. One way to do it is to put the links on the bottom of the page

labeled "Update this Contact" and "Delete this Contact". By doing this we can

use the current record's ContactID to let the ASPs know which record to affect.

The code at the foot of viewlist.asp would be:

Add a Contact

Search Contacts

<A href="edit.asp?ContactID=<%=rs("ContactID")%>">Update this

Contact

 351

<A href="delete.asp?ContactID=<%=rs("ContactID")%>">Delete this

Contact

Adding Records

We will create the Add page with HTML forms to enter information

through the web. First create a form tag in the body. The data is submitted to

another page called addsubmit.asp with a method of Post. Next determine what

fields to submit, in this case the text fields: Name, Address, City, State, Zip

Code. Note we include hidden forms to capture information such as date

submitted. We end the form with the submit button.

<body>

<form action="addsubmit.asp" method="POST">

Name: <input type="Text" name="txtName"size="20">

Address: <input type="Text" name="txtAddress" size="20">

City: <input type="Text" name="txtCity" size="20">

State: <input type="Text" name="txtState" size="20">

Zip Code: <input type="Text" name="txtZip" size="20">

<input type="Submit" name="" value="Add">

</form>

</body>

Note that there is no Javascript code in this file so save add.html with a

file extension of .html instead of .asp. If we include a hidden field to capture the

Date (<input type="hidden" name="txtDate" value="<%> =now() %>">) then this

would have to be an asp file. Do this as a class exercise.

Inserting the New Record into the Database

Now, we create the page addsubmit.asp that puts the data we collected

into a Database. First we define the SQL command. It doesn't really matter

where the SQL command is defined as long as it is before the ADO tries to use

the SQL command. However, the SQL statement is the key to the page so we

suggest beginning with it. The SQL command we will use is the INSERT. It has

the format:

 352

INSERT INTO TableName (FieldName1, FieldName2) VALUES ('Value1',

'Value2') Specifically for this example:

INSERT INTO Contacts (Name, Address, City, State, Zip) VALUES

('Value1', 'Value2', 'Value3', 'Value4', 'Value5')

Collecting the Data

We will use the request.form method to get the Values into our SQL

command. The SQL command must be on one continuous string or line.

Therefore, we will use the VB Concatenation string &_

<%

SQL="INSERT INTO Contacts (Name, Address, City, State, Zip) Values ("

&_

"'" & request.form("txtName") + "', " &_

"'" & request.form("txtAddress") + "', " &_

"'" & request.form("txtCity") + "', " &_

"'" & request.form("txtState") + "', " &_

"'" & request.form("txtZip") + "')"

%>

The SQL command in addsubmit.asp is the same as the one created

before, but now it is broken up with request.form to accept different values.

Updating the Data

The Next three lines in addsubmit.asp are identical to those used in the

previous example. An ADO created Object DbConn.execute(SQL) executes the

SQL command.

<%

SQL="INSERT INTO Contacts (Name, Address, City, State, Zip) Values ("

&_

"'" & request.form("txtName") + "', " &_

"'" & request.form("txtAddress") + "', " &_

"'" & request.form("txtCity") + "', " &_

"'" & request.form("txtState") + "', " &_

"'" & request.form("txtZip") + "')"

DbConn = Server.CreateObject("ADODB.Connection")

 353

DSName = Session("DSName")

DbConn.Open("DSName;")

RS = DbConn.execute(SQL)

%>

Confirming the Success of the Transaction

If the code is correct, the data will be entered in the database. Next we let

the user know that the update is done. One way to do this is to add a Success

page after the ASP code. Once the ASP has executed, the HTML page will be

shown. Another option is addsubmit.asp to end with a response.redirect tag to

send users to another page. This would be done as so:

<%

SQL="INSERT INTO Contacts (Name, Address, City, State, Zip) Values ("

&_

"'" & request.form("txtName") + "', " &_

"'" & request.form("txtAddress") + "', " &_

"'" & request.form("txtCity") + "', " &_

"'" & request.form("txtState") + "', " &_

"'" & request.form("txtZip") + "')"

DbConn = Server.CreateObject("ADODB.Connection")

DSName = Session("DSName")

DbConn.Open("DSName;")

RS = DbConn.execute(SQL)

response.redirect "list.asp"

%>

If you use the response.redirect you will need to set buffering to true

before executing a response.write tag. You do this by placing the command <%

Response.Buffer = True %> at the beginning of the ASP page (just after the ASP

command <%@ language=VBScript %>. The response.write writes a partial

HTML page while the response.redirect tries to move to a new page, causing

an error if buffering is set to false. For IIS 4.0 and earlier, buffering defaults to

FALSE while IIS 5.0 defaults buffering to true.

 354

Editing a Record

Editing a record combines the previous list processes. First, in edit.asp

we display the information that has been entered (like in the first example).

Then, we want to change the data with forms (like the second example). So first

we write the ASP code edit.asp to retrieve the data. This is the same code used

in list.asp for the first example.

<%

DbConn = Server.CreateObject("ADODB.Connection")

DSName = Session("DSName")

DbConn.Open("DSName;")

SQL = "SELECT * FROM Contacts Where ContactID=" +

request("ContactID")

RS = DbConn.execute(SQL)

%>

Now we have a record set for the one record that we want to edit.

Displaying the Record to Be Edited

Next we put the data into a form so that it can be changed. We copy the

form from the second example but make a few changes. The form action points

to a new asp file called editsubmit.asp. We also pass the ContactID so that the

server knows which file to change. Also, we assign values to all the form fields

that are the values of the corresponding Field in the Contacts Table.

<body>

<form action="editsubmit.asp?ContactID=<%RS("ContactID")%>"

method="POST">

Name: <input type="Text" name="txtName"size="20" value="<%=

rs("Name") %>">

Address: <input type="Text" name="txtAddress" size="20" value="<%=

rs("Address") %>">>

City: <input type="Text" name="txtCity" size="20" value="<%= rs("City")

%>">>

 355

State: <input type="Text" name="txtState" size="20" value="<%=

rs("State") %>">>

Zip Code: <input type="Text" name="txtZip" size="20" value="<%=

rs("Zip") %>">>

<input type="Submit" name="" value="Add">

</form>

</body>

Updating the Record

Now we will use the data we collected in the form. In editsubmit.asp we

write over the each field, regardless if that field was changed, with the UPDATE

SQL Command. The general format of the UPDATE command is:

UPDATE TableName SET FieldName = 'New Value' WHERE FieldName2 =

'Value2' For this exercise, the SQL Command is:

UPDATE Contacts Set Name = 'Value1', Address= 'Value2', City= 'Value3',

State= 'Value4', Zip= 'Value5' WHERE ContactID=Value6

Value6 is not enclosed in single quotes because it is an integer, not a string.

Replacing the Data

Once again we use in editsubmit.asp the request.form method to replace

the data with the information submitted via form. This must be on one line, but

for readability's sake we use concatenation. The ASP code is:

<%

SQL = "UPDATE Contacts SET " &_

"Name='" & request.form("txtName") & "', " &_

"Address='" & request.form("txtAddress") & "', " &_

"City='" & request.form("txtCity") & "', " &_

"State='" & request.form("txtState") & "', " &_

"Zip='" & request.form("txtZip") & "' " &_

"WHERE ContactID=" & request("ContactID")

DbConn = Server.CreateObject("ADODB.Connection")

DSName = Session("DSName")

DbConn.Open("DSName;")

 356

RS = DbConn.execute(SQL)

response.redirect "viewlist.asp?ContactID=" & request("ContactID")

%>

Deleting Records

In delete.asp we delete records using the DELETE SQL command. First,

we write out the SQL command. If we want to delete a particular record, use the

WHERE command to specify which record. By using a record's unique

ContactID we ensure that we delete only that record.

DELETE FROM Contacts WHERE ContactID = 'Value'

In this example:

<%

SQL = "DELETE FROM Contacts Where ContactID=" &

request("ContactID")

DbConn = Server.CreateObject("ADODB.Connection")

DSName = Session("DSName")

DbConn.Open("DSName;")

RS = DbConn.execute(SQL)

response.redirect "list.asp"

%>

The rest of the code in delete.asp is the same before, though we redirect

this webpage to list.asp after execution.

Note that delete.asp deletes a record as soon as it executes. For student

exercise, write a confirmation page to ask the user if she actually wants to go

through with the delete.

16.6. Searching the Database

Searching the database is done with the LIKE SQL Command. Before we

write the ASP to update the database, we need to identify the search criteria in

a form. The form in search.html selects the field or fields to search and what

string or strings to search for. In this example, we use a drop down form to

determine what to search for and a textbox so users can input a search string.

 357

The values of the Drop Down form are the Names of the Fields in the Database.

In our example, the search page search.html will look something like this:

<form action="searchsubmit.asp" method="POST">

<select name="txtField">

<option value="Name">Name

<option value="Address">Address

<option value="City">City

<option value="State">State

<option value="Zip">Zip

</select>

<input type="Text" name="txtSearch" size="20"><p>

<input type="Submit" name="" value="Search">

</form>

Making the Search Form Work

Once the search form is written, we write the ASP code that makes it

work. The values are passed to the file searchsubmit.asp. First, we figure out

what SQL Command to use. In this case we use the LIKE Command. LIKE is

similar to WHERE but allows greater flexibility.

SELECT * FROM Contacts Where FieldName LIKE '%%Value%%'

In searchsubmit.asp we want the FieldName to be

request.form("txtField") i.e. whatever is selected from the drop down box and

the Value request.form("txtSearch") to be whatever is entered in the text box.

The other three lines in searchsubmit.asp are like the same as the first

example.

<%

SQL = "SELECT * FROM Contacts Where " &

request.form("txtField") & " LIKE '%%" & request.form("txtSearch")

& "%%'"

DbConn = Server.CreateObject("ADODB.Connection")

DSName = Session("DSName")

DbConn.Open("DSName;")

 358

RS = DbConn.execute(SQL)

%>

Displaying the Search Results

We have a record set ready to be output to HTML but we are not sure

how many records are in the set. Therefore, we loop through the record set in

searchsubmit.asp just like we did before, with list.asp. As before, we will link to

viewlist.asp to display the detailed record:

<%

Do While NOT RS.EOF

%>

 <a href="viewlist.asp?ContactID=<%=RS("ContactID")%>">

<%=RS("Name")%>

<%

RS.Movenext

loop

%>

This will output the Name of the Person ContactID who matches the

search value for along with a link to that person's entire record. To show the

field that was searched for, in searchsubmit.asp we add a few if then

statements.

<%

Do While NOT RS.EOF

%>

 <a href="viewlist.asp?ContactID=<%=RS("ContactID")%>">

<%=RS("Name")%>

<% If request.form("txtField")="Address" then response.write

RS("Address") & "
"%>

<% If request.form("txtField")="City" or

request.form("txtField")="State" then %>

<% response.write RS("City")%>, <% response.write

RS("State")%>

<% end if %>

<% If request.form("txtField")="Zip" then response.write RS("Zip") &

 359

"
"%>

<hr width="200" align="left">

<%

RS.Movenext

loop

%>

If we try to submit a word with a single quote in it, the ASP will not work.

One work around is to change all single quotes to another character.

Creating a system dsn using the ODBC Connection in Control Panel

requires console and administrator access. Instead, create a file dsn and refer

to the database and the file dsn with session variables.

IIS 4.0 looks for the global.asa in the root directory first, then in the

directory where the application resides. If an application breaks, check the root

directory for an incompatible global.asa file.

If you use the response.redirect you will need to set buffering to true

before executing a response.write tag. You do this by placing the command <%

Response.Buffer = True %> at the beginning of the ASP page (just after the ASP

command <%@ language=VBScript %>. The response.write writes a partial

HTML page while the response.redirect tries to move to a new page, causing

an error if buffering is set to false. For IIS 4.0 and earlier, buffering defaults to

FALSE while IIS 5.0 defaults buffering to true.

Listing the Data

Look at list.asp to see the file being created. At the very top of ASP file

(before the HTML tag), we create a server object:

<%

DbConn = Server.CreateObject("ADODB.Connection")

%>

Next we tell the Object DbConn which database to use. The ODBC

connection must be created beforehand.

<%

DbConn = Server.CreateObject("ADODB.Connection")

 360

DbConn.Open ("DSN=Contacts;")

%>

Write the SQL Command to be used:

<%

DbConn = Server.CreateObject("ADODB.Connection")

DbConn.Open ("DSN=Contacts;")

SQL = "SELECT * FROM Contacts ORDER BY Name"

%>

Finally, tell the Object DbConn to use that SQL command and create a Record

Set:

<%

DbConn = Server.CreateObject("ADODB.Connection")

DSName = Session("DSName")

DbConn.Open("DSName;")

SQL = "SELECT * FROM Contacts ORDER BY Name"

RS = DbConn.execute(SQL)

%>

Displaying the Data

Now the Record Set is created, we display the data with a loop in the

body of the ASP file list.asp. The Do While loop moves record by record through

the Record Set.

<body>

List of Stuff in the Database <p>

<% Do While NOT RS.EOF %>

 Name

<% RS.movenext

Loop %>

</body>

Use RS("fieldname") to access field data for each Record in the Record Set

and write it to the HTML page:

 361

<body>

Lets list more stuff from the database and include links <p>

<% Do While NOT RS.EOF %>

<a href="viewlist.asp?ContactID=<%= rs

("ContactID")%>"><%= rs("Name")%>

<% RS.movenext

Loop %>

</body>

Retrieving a Particular Record

Next we want to create in list.asp a list of all the records in our table with

links for each record. These links will invoke another ASP file viewlist.asp that

will display the detailed information about each record. The linked list does

basically the same task as our previous example, so we will use similar code.

The table and database are the same so the first list lines and last line do

not change. However, we need to limit the record set to just one record in the

table. Therefore, our SQL command will change.

Select only the fields for this one record from the Contacts table. One

distinguishes between records by ContactID. (This is the database's key or

index field.) We want to select all the fields from the table Contacts where the

value of the field ContactID is the same as the value of the variable ContactID

passed along with the URL. So the SQL command for the first record would be "

SELECT * FROM Contacts Where ContactID=1 ". (Do not use single quotes

because ContactID is an integer, not a string). ContactID changes when we

select a different record.

Instead of writing a new page for each record, we can write a single ASP

page viewlist.asp that can be used for any of the records in this database.

<%

DbConn = Server.CreateObject("ADODB.Connection")

DSName = Session("DSName")

DbConn.Open("DSName;")

 362

SQL = "SELECT * FROM Contacts where ContactID=" &

request("ContactID")

RS = DbConn.execute(SQL)

%>

When this file is called, the key field ContactID is passed along in the

URL in the browser's location box. This requests the value of the variable

ContactID. The record set is made of information from the record where the

variable ContactID equals the contents of the database field ContactID.

Now we want to display the record set for ContactIDwith just the

information we need. Because we display only one record, viewlist.asp does not

need to loop through the record set. Before we write the data, we design the

body of the web page viewlist.asp to look like we want it to look.

<body>

Name<hr> <p>

Name

Address

City, State Zip<p>

<hr><p>

List Contacts

</body>

We put ASP code in viewlist.asp wherever we want data to appear:

<body>

<%=rs("Name")%><hr> <p>

<%=rs("Name")%>

<%=rs("Address")%>

<%=rs("City")%>, <%=rs("State") & " " & rs("Zip")%><p>

<hr><p>

List Contacts

</body>

This same file is viewlist.asp used for all the links. Just the SQL

command will change, causing a unique Record Set for each ContactID .

 363

16.7. Let us Sum Up

ASP provide a convenient means to View, Add, Delete, Edit and Search

Databases. Every database has these basic functions. To learn about how to

use Active Server Pages to support a database application on the Web, we will

develop a simple Access database of contact names and address. Most

databases are far more complex than this example, but the fundamental

principles are the same.

ADO talks to the database using Structured Query Language (SQL), a

standard language for communicating with relational (tabular) databases. To

see web pages as they are processed, put the server's IP address and the

directory and file name into the location window on the browser.

Setting Up an ODBC Connection using the System DSN

Before we talk about SQL, let's tell ADO about our ODBC connection

between the server and the database.

1. In Settings/Control Panel go to 32bit ODBC icon

2. Select the SYSTEM DSN tab and hit ADD

3. Select Microsoft Access Driver from the list and select Finish

4. The Data Source Name is Contacts

5. Select a database by hitting select and browsing to the database. Hit

OK. The database should not be in the WEBROOT unless customers

need to be able to download the database. The database can be on

another machine as well. Note: the database cannot be open when

setting this up. If the database is sensitive, put it on a machine only

reachable by a non-TCP/IP networking protocol.

6. Hit OK and the connection is made.

Setting Up an ODBC Connection using the File DSN

You can also make an ODBC connection with a file.dsn file and the

appropriate commands in the ASP pages. The advantage is that one need not

have access to the web server console to create the ODBC connection. Secondly,

one can readily change the database location by simply changing the code. One

 364

can use the console ODBC program to create file.dsn files for a variety of ODBC

compatible database. This example is for Microsoft Access database.

Typical SQL Commands

SELECT

WHERE

ORDER BY

INSERT INTO

DELETE FROM

UPDATE

LIKE

Active Data Objects

We will use Active Data Objects or ADO to create data objects the server

can use. We use ADO to identify the database and the ODBC connection to use

and what SQL command to use. We create the object, establish a connection to

a database, define a SQL command and then execute the SQL command. By

starting with the SQL Command first; the rest of the page will follow from it.

Transactions

Adding

Deleting and

Editing

16.8. Lesson end Activities

 1. What is the purpose of ODBC?

 2. Explain about the two methods of ODBC connection

 3. Write short notes on Active Data Objects.

16.9. Check your progress

 1. Write a ASP program to maintain the Telephone directory

maintenance.

 2. Write a ASP program to list the data.

 365

16.10. Reference

1. Internet & World Wide Web, H.M. Deitel, P.J.Deitel and A.B.Goldberg,

Prentice Hall.

2. www.microsoft.com

 366

 367

Lesson 17

CGI and PERL

Contents

17.0. Aim and Objectives

17.1. Introduction

17.2. Basics of CGI program

17.3. Perl Variable and Data Types

17.4. String Manipulation

17.5. Regular Expression

17.6. CGI Environment Variables

17.7. Form Processing

17.8. Sending Email

17.9. Verifying user name and password

17.10. Let us Sum Up

17.11. Lesson End Activities

17.12. Check your Progress

17.13. Reference

17.0. Aim and Objectives

• To understand CGI

• To learn PERL for web page developing

17.1. Introduction

CGI/Perl is very similar to HTML; it has a clearly defined syntax, and if

you follow those syntax rules, you can write Perl as easily as you do HTML. The

first line of your program should look like this:

#!/usr/bin/perl -wT

The first part, #!, indicates that this is a script.

 368

The next part, /usr/bin/perl, is the location (or path) of the Perl

interpreter.

The final part contains optional flags for the Perl interpreter.

Warnings are enabled by the -w flag.

Your program should follow the above line.

To print a line

 @!/usr/bin/perl –wT

 print(“Welcome to Perl”);

17.2. Basics of a CGI Program

A CGI is simply a program that is called by the webserver, in response to

some action by a web user. This might be something simple like a page counter,

or a complex form-handler.

CGI programs may be written in any programming language; we're just

using Perl because it's fairly easy to learn. if you're writing a CGI that's going to

generate an HTML page, you must include this statement somewhere in the

program before you print out anything else:

print "Content-type: text/html\n\n";

This is a content-type header that tells the receiving web browser what

sort of data it is about to receive — in this case, an HTML document. If you

forget to include it, or if you print something else before printing this header,

you'll get an "Internal Server Error" when you try to access the CGI program.

First CGI Program

Create a file with the name "first.cgi". The first line (#!/usr/bin/perl)

should start in column 1. The subsequent lines can start in any column.

Example 1: first.cgi - Hello World Program

#!/usr/bin/perl -wT

print "Content-type: text/html\n\n";

print "Hello, world!\n";

Let's try for second example. If you want to display all html content then add

print statement for every HTML tag:

 369

Example 2: second.cgi - Hello World Program 2

#!/usr/bin/perl -wT

print "Content-type: text/html\n\n";

print "<html><head><title>Hello World</title></head>\n";

print "<body>\n";

print "<h2>Hello, world!</h2>\n";

print "</body></html>\n";

Save this file, adjust the file permissions if necessary, and view it in your web

browser. This time you should see "Hello, world!" displayed in a H2-size HTML

header.

Now not only have you learned to write your first CGI program, you've

also learned your first Perl statement, the print function:

print "somestring";

This function will write out any string, variable, or combinations thereof

to the current output channel. In the case of your CGI program, the current

output is being printed to the visitor's browser.

The \n you printed at the end of each string is the newline character.

Newlines are not required, but they will make your program's output easier to

read.

You can write multiple lines of text without using multiple print

statements by using the here-document syntax:

print <<endmarker;

line1

line2

line3

etc.

endmarker

You can use any word or phrase for the end marker. Just be sure that

the closing marker matches the opening marker exactly (it is case-sensitive),

 370

and also that the closing marker is on a line by itself, with no spaces before or

after the marker.

The CGI.pm Module

Perl offers a powerful feature to programmers: add-on modules. These

are collections of pre-written code that you can use to do all kinds of tasks. You

can save yourself the time and trouble of reinventing the wheel by using these

modules.

Some modules are included as part of the Perl distribution; these are

called standard library modules and don't have to be installed. If you have Perl,

you already have the standard library modules.

There are also many other modules available that are not part of the

standard library. These are typically listed on the Comprehensive Perl Archive

Network (CPAN), which you can search on the web at http://search.cpan.org/.

The CGI.pm module is part of the standard library, and has been since

Perl version 5.004. CGI.pm has a number of useful functions and features for

writing CGI programs, and its use is preferred by the Perl community

Let's see how to use a module in your CGI program. First you have to

actually include the module via the use command. This goes after the

#!/usr/bin/perl line and before any other code:

use CGI qw(:standard);

Note we're not doing use CGI.pm but rather use CGI. The .pm is implied

in the use statement. The qw(:standard) part of this line indicates that we're

importing the "standard" set of functions from CGI.pm.

Now you can call the various module functions by typing the function

name followed by any arguments:

functionname(arguments)

If you aren't passing any arguments to the function, you can omit the

parentheses.

A function is a piece of code that performs a specific task; it may also be

called a subroutine or a method. Functions may accept optional arguments (also

 371

called parameters), which are values (strings, numbers, and other variables)

passed into the function for it to use.

The CGI.pm module has many functions; for now we'll start by using these

three:

header;

start_html;

end_html;

The header function prints out the "Content-type" header. With no

arguments, the type is assumed to be "text/html". start_html prints out the

<html>, <head>, <title> and <body> tags. It also accepts optional arguments. If

you call start_html with only a single string argument, it's assumed to be the

page title. For example:

print start_html("Hello World");

will print out the following*:

<html>

<head>

<title>Hello World</title>

<head>

<body>

You can also set the page colors and background image with start_html:

print start_html(-title=>"Hello World",

 -bgcolor=>"#cccccc", -text=>"#999999",

 -background=>"bgimage.jpg");

Notice that with multiple arguments, you have to specify the name of

each argument with -title=>, -bgcolor=>, etc. This example generates the same

HTML as above, only the body tag indicates the page colors and background

image:

<body bgcolor="#cccccc" text="#999999" background="bgimg.jpg">

The end_html function prints out the closing HTML tags:

</body>

</html>

 372

So, as you can see, using CGI.pm in your CGI programs will save you some

typing.

Let's try using CGI.pm in an actual program now. Start a new file and enter

these lines:

Example 3: three.cgi - Hello World Program, using CGI.pm

#!/usr/bin/perl -wT

use CGI qw(:standard);

print header;

print start_html("Hello World");

print "<h2>Hello, world!</h2>\n";

print end_html;

CGI.pm also has a number of functions that serve as HTML shortcuts. For

instance:

print h2("Hello, world!");

Will print an H2-sized header tag. You can find a list of all the CGI.pm

functions by typing perldoc CGI in the shell, or visiting

http://www.perldoc.com/ and entering "CGI.pm" in the search box.

17.3. Perl Variable and Data Types

 Perl has built-in data types that represent different kinds of data. Each

variable has a specific character preceding.

Data Type Format Description

Scalar $scalarname Can be string, an integer number, a

floating-point number or a reference

Array @arrayname An ordered list of scalar variables that

 can be accessed using integer indices

Hash %hashname An unordered set of scalar variables

 whose values are accessed using

 unique scalar value

 373

Documenting Your Programs

Documentation can be embedded in a program using comments. A

comment in Perl is preceded by the # sign; anything appearing after the # is a

comment:

Example 4: four.cgi - Hello World Program, with Comments

#!/usr/bin/perl -wT

use CGI qw(:standard);

This is a comment

So is this

Comments are useful for telling the reader

what's happening. This is important if you

write code that someone else will have to

maintain later.

print header; # here's a comment. print the header

print start_html("Hello World");

print "<h2>Hello, world!</h2>\n";

print end_html; # print the footer

the end.

17.4. String Manipulation

Perl is very well known for ease in manipulation of strings. What might

take other programming languages several lines of code can generally be done

in Perl in less than 2 lines.

The dot operator (.)

This allows you to concatenate two strings together into one string.

Example using the Dot Operator

$sFirstName = "Bharathiar ";

$sLastName = "University";

$sFullName = $sFirstName.$sLastName;

 374

This will take the value of $sFirstName and concatenate the value of

$sLastName. Thus, this will give you the $sFullName "Bharathiar

University".

The index function

This allows you to find an occurrence of one string within another and

return the position of that occurrence.

Example using the index() function

$sString = "Computer Science and Engineering";

$sSubString = "Science";

$iIndex = index($sString, $sSubString);

$sString contains the string that you are searching. The index() function

finds the position in the string where $sSubString begins. In the above

example, $iIndex will get the value 10 since "Science" starts at position

ten in the string.

The substring function

This allows you to copy part of a string from another by specifying

beginning position and (in one version) length of string.

 # Example using the substr() function

$sSubString = substr($sString, $iStart);

$sOldString = "Bharathiar University";

$sNewString = substr($sOldString, 12,3);

$sNewString will contain the new value. It looks at string $sOldString as

an array of characters. It goes to the character at position 12 which

would be 'Uni' and then it grabs it and the rest of the 3 character. This

new string is now: "University".

The length function

This function returns the length in characters of the string.

Example using the length() function

$sString = "JavaCard";

$iLength = length ($sString);

 375

$iLength will contain the length of the string $sString which is 8

characters long.

The split function

This allows you to split up one string into multiple strings by looking for

occurrences of a character or characters within it. The results are stored

into an array.

Examples using the split() function

IP Address 163.185.20.182

$sIpAddress = "163.185.20.182";

@asClassAddresses = split (/\./, $sIpAddress);

Notice the backslash in the split function. The /.../ is a place where a

regular expression can appear. A "." in a regular expression means

match any character

Now the array contain

$asClassAddresses[0] = "163"

$asClassAddresses[1] = "185"

$asClassAddresses[2] = "20"

$asClassAddresses[3] = "182"

The join function

This does the exact opposite of split(). Here you give an array of scalars

and a delimiting character. Join will glue it all together.

Examples using the join() function

@asIpAddress = ("163","185","20","182");

$sFullIpAddress = join (".", @asIpAddress);

Join will take the individual values "163", "185", "20", and "182" and glue

them together using a dot. Your final result stored in string

$sFullIpAddress will be "163.185.20.182".

17.5. Regular Expressions

The major goal to design Perl is to easy the text processing.

 376

Simple Characters

In regular expressions, generally, a character matches itself. The only

exceptions are regular expression special characters. To match one of these

special characters, you must put a \ before the character.

For example, the regular expression abc matches a set of strings that

contain abc somewhere in them. Since * happens to be a regular expression

special character, the regular expression * matches any string that contains

the * character.

The * and . Special Character

The * is used to indicate that zero or more of the previous characters

should be matched. Thus, the regular expression a* will match any string that

contains zero or more a's. Note that since a* will match any string with zero or

more a's, a* will match all strings, since all strings (including the empty string)

contain at least zero a's. So, a* is not a very useful regular expression.

A more useful regular expression might be baa*. This regular expression

will match any string that has a b, followed by one or more a's. Thus, the set of

strings we are matching are those that contain ba, baa, baaa, etc. In other

words, we are looking to see if there is any \sheep speech" hidden in our text.

The next special character we will consider is the . character. The . will

match any valid character. As an example, consider the regular expression a.c.

This regular expression will match any string that contains an a and a c, with

any possible character in between. Thus, strings that contain abc, acc, amc,

etc. are all in the class of strings that this regular expression matches.

The | Character

The | special character is equivalent to an “or" in regular expressions.

This character is used to give a choice. So, the regular expression abc|def will

match any string that contains either abc or def.

Grouping with ()s

Sometimes, within regular expressions, we want to group things

together. Doing this allows building of larger regular expressions based on

smaller components. The ()'s are used for grouping. For example, if we want to

match any string that contains abc or def, zero or more times, surrounded by a

 377

xx on either side, we could write the regular expression xx(abc|def)*xx. This

applies the * character to everything that is in the parentheses. Thus we can

match any strings such as xxabcxx, xxabcdefxx, etc.

The Anchor Characters

Sometimes, we want to apply the regular expression from a defined point.

In other words, we want to anchor the regular expression so it is not permitted

to match anywhere in the string, just from a certain point.

The anchor operators allow us to do this. When we start a regular

expression with a ^, it anchors the regular expression to the beginning of the

string. This means that whatever the regular expression starts with must be

matched at the beginning of the string. For example, ^aa* will not match strings

that contain one or more a's; rather it matches strings that start with one or

more a's.

We can also use the $ at the end of the string to anchor the regular

expression at the end of the string. If we applied this to our last regular

expression, we have ^aa*$ which now matches only those strings that consist of

one or more a's. This makes it clear that the regular expression cannot just look

anywhere in the string, rather the regular expression must be able to match the

entire string exactly, or it will not match at all.

In most cases, you will want to either anchor a regular expression to the

start of the string, the end of the string, or both. Using a regular expression

without some sort of anchor can also produce confusing and strange results.

However, it is occasionally useful.

Pattern Matching

Now that you are familiar with some of the basics of regular expressions,

you probably want to know how to use them in Perl. Doing so is very easy.

There is an operator, =~, that you can use to match a regular expression

against scalar variables. Regular expressions in Perl are placed between two

forward slashes (i.e., //). The whole $scalar =~ // expression will evaluate to 1

if a match occurs, and undef if it does not. Consider the following code sample:

 378

use strict;

while (defined($currentLine = <STDIN>)) {

if ($currentLine =~ /^(J|R)MS speaks:/) {

print $currentLine;

}

}

This code will go through each line of the input, and print only those

lines that start with \JMS speaks:" or \RMS speaks:".

Regular Expression Shortcuts

Writing out regular expressions can be problematic. For example, if we

want to have a regular expression that matches all digits, we have to write:

(0|1|2|3|4|5|6|7|8|9)

It would be terribly annoying to have to write such things out. So, Perl

gives an incredible number of shortcuts for writing regular expressions.

For example, for ranges of values, we can use the brackets, []'s. So, for

our digit expression above, we can write [0-9]. In fact, it is even easier in perl,

because \d will match that very same thing.

17.6.CGI Environment Variables

Environment variables are a series of hidden values that the web server

sends to every CGI program you run. Your program can parse them and use the

data they send. Environment variables are stored in a hash named %ENV:

DOCUMENT_ROOT The root directory of your server

HTTP_COOKIE The visitor's cookie, if one is set

HTTP_HOST The hostname of the page being attempted

HTTP_REFERER The URL of the page that called your program

HTTP_USER_AGENT The browser type of the visitor

 379

HTTPS "on" if the program is being called through a secure server

PATH The system path your server is running under

QUERY_STRING The query string (see GET, below)

REMOTE_ADDR The IP address of the visitor

REMOTE_HOST The hostname of the visitor (if your server has reverse-

name-lookups on; otherwise this is the IP address again)

REMOTE_PORT The port the visitor is connected to on the web server

REMOTE_USER The visitor's username (for .htaccess-protected pages)

REQUEST_METHOD GET or POST

REQUEST_URI The interpreted pathname of the requested document or

CGI (relative to the document root)

SCRIPT_FILENAME The full pathname of the current CGI

SCRIPT_NAME The interpreted pathname of the current CGI (relative to

the document root)

SERVER_ADMIN The email address for your server's webmaster

SERVER_NAME Your server's fully qualified domain name (e.g.

www.cgi101.com)

SERVER_PORT The port number your server is listening on

SERVER_SOFTWARE The server software you're using (e.g. Apache 1.3)

Some servers set other environment variables as well; check your server

documentation for more information. Notice that some environment variables

give information about your server, and will never change (such as

SERVER_NAME and SERVER_ADMIN), while others give information about the

visitor, and will be different every time someone accesses the program.

Not all environment variables get set. REMOTE_USER is only set for

pages in a directory or subdirectory that's password-protected via a .htaccess

 380

file. And even then, REMOTE_USER will be the username as it appears in the

.htaccess file; it's not the person's email address. There is no reliable way to get

a person's email address, short of asking them for it with a web form.

You can print the environment variables the same way you would any

hash value:

print "Caller = $ENV{HTTP_REFERER}\n";

Let's try printing some environment variables. Start a new file named env.cgi:

Example 5 : env.cgi - Print Environment Variables Program

#!/usr/bin/perl -wT

use strict;

use CGI qw(:standard);

use CGI::Carp qw(warningsToBrowser fatalsToBrowser);

print header;

print start_html("Environment");

foreach my $key (sort(keys(%ENV))) {

 print "$key = $ENV{$key}
\n";

}

print end_html;

Let's look at several ways to use some of this data.

Referring Page

When you click on a hyperlink on a web page, you're being referred to

another page. The web server for the receiving page keeps track of the referring

page, and you can access the URL for that page via the HTTP_REFERER

environment variable. Here's an example:

Example 6 : refer.cgi - HTTP Referer Program

#!/usr/bin/perl -wT

use CGI qw(:standard);

use CGI::Carp qw(warningsToBrowser fatalsToBrowser);

use strict;

print header;

 381

print start_html("Referring Page");

print "Welcome, I see you've just come from

$ENV{HTTP_REFERER}!<p>\n";

print end_html;

Remember, HTTP_REFERER only gets set when a visitor actually clicks on a

link to your page. If they type the URL directly (or use a bookmarked URL), then

HTTP_REFERER is blank. To properly test your program, create an HTML page

with a link to refer.cgi, then click on the link:

Referring Page

HTTP_REFERER is not a foolproof method of determining what page is

accessing your program. It can easily be forged.

Remote Host Name, and Hostname Lookups

You've probably seen web pages that greet you with a message like

"Hello, visitor from (yourhost)!", where (yourhost) is the hostname or IP address

you're currently logged in with. This is a pretty easy thing to do because your IP

address is stored in the %ENV hash.

If your web server is configured to do hostname lookups, then you can

access the visitor's actual hostname from the $ENV{REMOTE_HOST} value.

Servers often don't do hostname lookups automatically, though, because it

slows down the server. Since $ENV{REMOTE_ADDR} contains the visitor's IP

address, you can reverse-lookup the hostname from the IP address using the

Socket module in Perl. As with CGI.pm, you have to use the Socket module:

use Socket;

(There is no need to add qw(:standard) for the Socket module.)

The Socket module offers numerous functions for socket programming

(most of which are beyond the scope of this book). We're only interested in the

reverse-IP lookup for now, though. Here's how to do the reverse lookup:

my $ip = "209.189.198.102";

my $hostname = gethostbyaddr(inet_aton($ip), AF_INET);

There are actually two functions being called here: gethostbyaddr and

inet_aton. gethostbyaddr is a built-in Perl function that returns the hostname

 382

for a particular IP address. However, it requires the IP address be passed to it in

a packed 4-byte format. The Socket module's inet_aton function does this for

you.

Let's try it in a CGI program. Start a new file called rhost.cgi, and enter

the following code:

Example 7: rhost.cgi - Remote Host Program

#!/usr/bin/perl -wT

use CGI qw(:standard);

use CGI::Carp qw(warningsToBrowser fatalsToBrowser);

use strict;

use Socket;

print header;

print start_html("Remote Host");

my $hostname = gethostbyaddr(inet_aton($ENV{REMOTE_ADDR}),

AF_INET);

print "Welcome, visitor from $hostname!<p>\n";

print end_html;

17.7. Form processing

A Simple Form Using GET

There are two ways to send data from a web form to a CGI program: GET

and POST. These methods determine how the form data is sent to the server.

With the GET method, the input values from the form are sent as part of

the URL and saved in the QUERY_STRING environment variable. With the POST

method, data is sent as an input stream to the program. You can set the

QUERY_STRING value in a number of ways. For example, here are a number of

direct links to the env.cgi program:

Try opening each of these in your web browser. Notice that the value for

QUERY_STRING is set to whatever appears after the question mark in the URL

itself.

 383

You can also process simple forms using the GET method. Start a new

HTML document called envform.html, and enter this form:

Program 3-5: envform.html - Simple HTML Form Using GET

<html><head><title>Test Form</title></head>

<body>

<form action="env.cgi" method="GET">

Enter some text here:

<input type="text" name="sample_text" size=30>

<input type="submit"><p>

</form>

</body></html>

Save the form and upload it to your website. Remember you may need to

change the path to env.cgi depending on your server; if your CGI programs live

in a "cgi-bin" directory then you should use action="cgi-bin/env.cgi".

Bring up the form in your browser, then type something into the input

field and hit return. You'll notice that the value for QUERY_STRING now looks

like this:

sample_text=whatever+you+typed

The string to the left of the equals sign is the name of the form field. The

string to the right is whatever you typed into the input box. Notice that any

spaces in the string you typed have been replaced with a +. Similarly, various

punctuation and other special non-alphanumeric characters have been

replaced with a %-code. This is called URL-encoding, and it happens with data

submitted through either GET or POST methods.

You can send multiple input data values with GET:

<form action="env.cgi" method="GET">

First Name: <input type="text" name="fname" size=30><p>

Last Name: <input type="text" name="lname" size=30><p>

<input type="submit">

</form>

 384

This will be passed to the env.cgi program as follows:

$ENV{QUERY_STRING} = "fname=joe&lname=smith"

The two form values are separated by an ampersand (&). You can divide

the query string with Perl's split function:

my @values = split(/&/,$ENV{QUERY_STRING});

split lets you break up a string into a list of strings, splitting on a specific

character. In this case, we've split on the "&" character. This gives us an array

named @values containing two elements: ("fname=ramesh",

"lname=thanappan"). We can further split each string on the "=" character using

a foreach loop:

foreach my $i (@values) {

 my($fieldname, $data) = split(/=/, $i);

 print "$fieldname = $data
\n";

}

This prints out the field names and the data entered into each field in the

form. It does not do URL-decoding, however. A better way to parse

QUERY_STRING variables is with CGI.pm.

Using CGI.pm to Parse the Query String

If you're sending more than one value in the query string, it's best to use

CGI.pm to parse it. This requires that your query string be of the form:

fieldname1=value1

For multiple values, it should look like this:

fieldname1=value1&fieldname2=value2&fieldname3=value3

This will be the case if you are using a form, but if you're typing the URL

directly then you need to be sure to use a fieldname, an equals sign, then the

field value.

CGI.pm provides these values to you automatically with the param function:

param('fieldname');

This returns the value entered in the fieldname field. It also does the

URL-decoding for you, so you get the exact string that was typed in the form

field.

 385

You can get a list of all the fieldnames used in the form by calling param

with no arguments:

my @fieldnames = param();

param is NOT a Variable

param is a function call.

print "$p = param($p)
\n";

If you want to print the value of param($p), you can print it by itself:

print param($p);

Or call param outside of the double-quoted strings:

print "$p = ", param($p), "
\n";

You won't be able to use param('fieldname') inside a here-document. You may

find it easier to assign the form values to individual variables:

my $firstname = param('firstname');

my $lastname = param('lastname');

Another way would be to assign every form value to a hash:

my(%form);

foreach my $p (param()) {

 $form{$p} = param($p);

}

You can achieve the same result by using CGI.pm's Vars function:

use CGI qw(:standard Vars);

my %form = Vars();

The Vars function is not part of the "standard" set of CGI.pm functions,

so it must be included specifically in the use statement.

Either way, after storing the field values in the %form hash, you can refer

to the individual field names by using $form{'fieldname'}.

Let's try it now. Create a new form called getform.html:

Example 8 : getform.html - Another HTML Form Using GET

<html><head><title>Test Form</title></head>

 386

<body>

<form action="get.cgi" method="GET">

First Name: <input type="text" name="firstname" size=30>

Last Name: <input type="text" name="lastname" size=30>

<input type="submit"><p>

</form>

</body></html>

Save and upload it to your webserver, then bring up the form in your web

browser.

Now create the CGI program called get.cgi:

Example 9 : get.cgi Form Processing Program Using GET

#!/usr/bin/perl -wT

use CGI qw(:standard);

use CGI::Carp qw(warningsToBrowser fatalsToBrowser);

use strict;

print header;

print start_html("Get Form");

my %form;

foreach my $p (param()) {

 $form{$p} = param($p);

 print "$p = $form{$p}
\n";

}

print end_html;

Take a look at the full URL of get.cgi after you press submit. You should

see all of your form field names and the data you typed in as part of the URL.

This is one reason why GET is not the best method for handling forms; it isn't

secure.

Processing Forms using POST

Most forms you create will send their data using the POST method. POST

is more secure than GET, since the data isn't sent as part of the URL, and you

 387

can send more data with POST. Also, your browser, web server, or proxy server

may cache GET queries, but posted data is resent each time.

Your web browser, when sending form data, encodes the data being sent.

Alphanumeric characters are sent as themselves; spaces are converted to plus

signs (+); other characters — like tabs, quotes, etc. — are converted to "%HH" —

a percent sign and two hexadecimal digits representing the ASCII code of the

character. This is called URL encoding.

In order to do anything useful with the data, your program must decode

these. Fortunately the CGI.pm module does this work for you. You access the

decoded form values the same way you did with GET:

$value = param('fieldname');

So you already know how to process forms! You can try it now by

changing your getform.html form to method="POST" (rather than

method="GET"). You'll see that it works identically whether you use GET or

POST. Even though the data is sent differently, CGI.pm handles it for you

automatically.

Guestbook Form

One of the first CGI programs you're likely to want to add to your website

is a guestbook program, so let's start writing one. First create your HTML form.

The actual fields can be up to you, but a bare minimum might look like this:

<form action="post.cgi" method="POST">

Your Name: <input type="text" name="name">

Email Address: <input type="text" name="email">

Comments:

<textarea name="comments" rows="5"

 cols="60"></textarea>

<input type="submit" value="Send">

</form>

 388

Now you need to create post.cgi. This is nearly identical to the get.cgi

from last chapter, so you may just want to copy that program and make

changes:

Example 9 : post.cgi - Form Processing Program Using POST

#!/usr/bin/perl -wT

use CGI qw(:standard);

use CGI::Carp qw(warningsToBrowser fatalsToBrowser);

use strict;

print header;

print start_html("Thank You");

print h2("Thank You");

my %form;

foreach my $p (param()) {

 $form{$p} = param($p);

 print "$p = $form{$p}
\n";

}

print end_html;

Test your program by entering some data into the fields, and pressing

"send" when finished. Notice that the data is not sent in the URL this time, as it

was with the GET example.

Of course, this form doesn't actually DO anything with the data, which

doesn't make it much of a guestbook. Let's see how to send the data in e-mail.

Validating Form Data

You should always validate data submitted on a form; that is, check to

see that the form fields aren't blank, and that the data submitted is in the

format you expected. This is typically done with if/elsif blocks.

Here are some examples. This condition checks to see if the "name" field isn't

blank:

if (param('name') eq "") {

 &dienice("Please fill out the field for your name.");

 389

}

You can also test multiple fields at the same time:

if (param('name') eq "" or param('email') eq "") {

 &dienice("Please fill out the fields for your name

and email address.");

}

The above code will return an error if either the name or email fields are left

blank.

param('fieldname') always returns one of the following:

undef — or

undefined

fieldname is not defined in the form itself, or it's a

checkbox/radio button field that wasn't checked.

the empty

string

fieldname exists in the form but the user didn't type

anything into that field (for text fields)

one or more

values
whatever the user typed into the field(s)

If your form has more than one field containing the same fieldname, then

the values are stored sequentially in an array, accessed by param('fieldname').

You should always validate all form data — even fields that are

submitted as hidden fields in your form. Don't assume that your form is always

the one calling your program. Any external site can send data to your CGI.

Never trust form input data.

17.8. Sending Email

There are several ways to send mail. We'll be using the sendmail

programe under Unix. Before you can write your form-to-mail CGI program,

you'll need to figure out where the sendmail program is installed on your

webserver.

Since we're using the -T flag for taint checking, the first thing you need

to do before connecting to sendmail is set the PATH environment variable:

$ENV{PATH} = "/usr/sbin";

 390

The path should be the directory where sendmail is located; if sendmail

is in /usr/sbin/sendmail, then $ENV{PATH} should be "/usr/sbin". If it's in

/var/lib/sendmail, then $ENV{PATH} should be "/var/lib".

Next you open a pipe to the sendmail program:

open (MAIL, "|/usr/sbin/sendmail -t -oi") or

 die "Can't fork for sendmail: $!\n";

The pipe (which is indicated by the | character) causes all of the output

printed to that filehandle (MAIL) to be fed directly to the /usr/sbin/sendmail

program as if it were standard input to that program. Several flags are also

passed to sendmail:

-t Read message for recipients. To:, Cc:, and Bcc: lines will be

scanned for recipient addresses

-

oi

 Ignore dots alone on lines by themselves in incoming messages.

The -t flag tells sendmail to look at the message headers to determine

who the mail is being sent to. You'll have to print all of the message headers

yourself:

my $recipient = 'recipient@b-u.ac.in;

print MAIL "From: sender\@b-u.ac.in\n";

print MAIL "To: $recipient\n";

print MAIL "Subject: Guestbook Form\n\n";

Remember that you can safely put an @-sign inside a single-quoted

string, like 'recipient@b-u.ac.in', or you can escape the @-sign in double-quoted

strings by using a backslash ("sender\@b-u.ac.in").

The message headers are complete when you print a single blank line

following the header lines. We've accomplished this by printing two newlines at

the end of the subject header:

print MAIL "Subject: Guestbook Form\n\n";

 391

After that, you can print the body of your message. Let's try it. Start a

new file named guestbook.cgi, and edit it as follows. You don't need to include

the comments in the following code; they are just there to show you what's

happening.

Example 9 : guestbook.cgi - Guestbook Program

#!/usr/bin/perl -wT

use CGI qw(:standard);

use CGI::Carp qw(warningsToBrowser fatalsToBrowser);

use strict;

print header;

print start_html("Results");

Set the PATH environment variable to the same path

where sendmail is located:

$ENV{PATH} = "/usr/sbin";

open the pipe to sendmail

open (MAIL, "|/usr/sbin/sendmail -oi -t") or

 &dienice("Can't fork for sendmail: $!\n");

change this to your own e-mail address

my $recipient = 'nullbox@b-u.ac.in';

Start printing the mail headers

You must specify who it's to, or it won't be delivered:

print MAIL "To: $recipient\n";

From should probably be the webserver.

print MAIL "From: nobody\@b-u.ac.in\n";

print a subject line so you know it's from your form cgi.

print MAIL "Subject: Form Data\n\n";

Now print the body of your mail message.

foreach my $p (param()) {

 print MAIL "$p = ", param($p), "\n";

}

Be sure to close the MAIL input stream so that the

message actually gets mailed.

 392

close(MAIL);

Now print a thank-you page

print <<EndHTML;

<h2>Thank You</h2>

<p>Thank you for writing!</p>

<p>Return to our home page.</p>

EndHTML

print end_html;

Save the file, then modify your guestbook.html form so that the action points to

guestbook.cgi:

<form action="guestbook.cgi" method="POST">

Try testing the form. If the program runs successfully, you'll get e-mail in

a few moments with the results of your post.

17.9. Verifying user name and password

Verifying user name and password is a common security practice on the

Internet. In normal circumstances, all the user names and their corresponding

passwords are stored in a file on the server. Therefore, to verify user name and

password for a particular user on the Internet, a CGI application is required.

Since we don't have encryption at this moment, the implementation of

password checking is relatively simple. Suppose you have password file called

password.txt containing all the user names and passwords. To check a

password for a particular user it is necessary to read this file and perform the

comparison. To implement this, we have two programme s one for screen

display and another for password verification.

Example : Display Screen

<html>

 <head><title>Username and Password </title></head>

 <style>

 .butSt{background-color:#aaffaa;font-family:arial;font-weight:bold;

 font-size:18pt;color:#880000;width:250px;height:35px}

 393

 .txtSt{font-family:arial;font-weight:bold; text-align:left;

 font-size:18pt;color:#ffff00}</style>

<body style="background:#000088">

<form action="ex15-10.pl" method="post">

<table style="position:absolute;left:60px;top:50px" class="txtSt">

<tr><td colspan="2" style="text-align:center">

 Enter Your Username and
 Password Below

</td></tr>

<tr><td>Name:</td><td><input type="text" name="userId" id="userId"

 class="butSt" ></td></tr>

<tr><td>Password:</td><td><input type="password" name="passId"

 id="passId" class="butSt"></td></tr>

<tr><td><input type="submit" class="butSt" value="O.K."

 style="width:150px;background:#dddddd"></td></tr>

</table>

</form>

</body>

</html>

 394

When the user name and password are filled and the O.K. button is

clicked, the form is sent to the Perl script for processing. The program code of

the script is listed as follows:

#!usr/bin/perl

use CGI qw (:standard);

my $username = param(userId);

my $password = param(passId);

print "Content-type:text/html\n\n";

print << "mypage";

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"

lang="en">

 395

<head><title>Example: ex15-10.pl</title></head>

<style>.txtSt{font-size:18pt;color:#ffff00;font-family:arial}</style>

<body style="background:#000088;font-weight:bold" class="txtSt">

Mypage open(filehandle, "password.txt") or die "The File could not be

opened .. Error.";

while(my $st = <filehandle>)

{

 $st =~ s/\n//g;

 ($name, $pass) = split(/,/, $st);

 if($name eq "$username")

 {

 $userF = 1;

 if ($pass eq "$password")

 {

 $passwordF = 1;

 }

 }

 }

close(filehandle);

if ($userF && $passwordF)

{

print ("Thank you -- $username
 Access Granted !!

Enjoy Your Visit.");

}

elsif ($userF && !$passwordF)

{

 print ("Sorry, Wrong Password !!");

}

else

 396

{

 print ("Sorry, Access Denied !!");

}

 print "</body></html>";

17.10. Let us Sum Up

CGI/Perl is very similar to HTML; it has a clearly defined syntax, and if

you follow those syntax rules, you can write Perl as easily as you do HTML.

The first line of your program should look like this:

#!/usr/bin/perl -wT

The first part, #!, indicates that this is a script.

The next part, /usr/bin/perl, is the location (or path) of the Perl

interpreter.

The final part contains optional flags for the Perl interpreter.

Warnings are enabled by the -w flag.

A CGI is simply a program that is called by the webserver, in response to

some action by a web user. This might be something simple like a page counter,

or a complex form-handler.

Perl offers a powerful feature to programmers: add-on modules. These

are collections of pre-written code that you can use to do all kinds of tasks. You

can save yourself the time and trouble of reinventing the wheel by using these

modules.

Some modules are included as part of the Perl distribution; these are

called standard library modules and don't have to be installed. If you have Perl,

you already have the standard library modules.

There are also many other modules available that are not part of the

standard library. These are typically listed on the Comprehensive Perl Archive

Network (CPAN), which you can search on the web at http://search.cpan.org/.

 Perl has built-in data types that represent different kinds of data. Each

variable has a specific character preceding.

 397

Data Type Format Description

Scalar $scalarname Can be string, an integer number, a

floating-point number or a reference

Array @arrayname An ordered list of scalar variables that

 can be accessed using integer indices

Hash %hashname An unordered set of scalar variables

 whose values are accessed using

 unique scalar value

Documenting Your Programs

Documentation can be embedded in a program using comments. A

comment in Perl is preceded by the # sign; anything appearing after the # is a

comment:

String Manipulation

Perl is very well known for ease in manipulation of strings. What might

take other programming languages several lines of code can generally be done

in Perl in less than 2 lines.

The dot operator (.)

This allows you to concatenate two strings together into one string.

The index function

This allows you to find an occurrence of one string within another and

return the position of that occurrence.

The substring function

This allows you to copy part of a string from another by specifying

beginning position and (in one version) length of string.

The length function

This function returns the length in characters of the string.

The split function

This allows you to split up one string into multiple strings by looking for

occurrences of a character or characters within it. The results are stored

into an array.

 398

The join function

This does the exact opposite of split(). Here you give an array of scalars

and a delimiting character. Join will glue it all together.

Regular Expressions

In regular expressions, generally, a character matches itself. The only

exceptions are regular expression special characters. To match one of these

special characters, you must put a \ before the character.

The * and . Special Character

The * is used to indicate that zero or more of the previous characters

should be matched. Thus, the regular expression a* will match any string that

contains zero or more a's. Note that since a* will match any string with zero or

more a's, a* will match all strings, since all strings (including the empty string)

contain at least zero a's. So, a* is not a very useful regular expression.

The next special character we will consider is the . character. The . will

match any valid character. As an example, consider the regular expression a.c.

This regular expression will match any string that contains an a and a c, with

any possible character in between. Thus, strings that contain abc, acc, amc,

etc. are all in the class of strings that this regular expression matches.

The | Character

The | special character is equivalent to an “or" in regular expressions.

This character is used to give a choice. So, the regular expression abc|def will

match any string that contains either abc or def.

Grouping with ()s

Sometimes, within regular expressions, we want to group things

together. Doing this allows building of larger regular expressions based on

smaller components. The ()'s are used for grouping

The Anchor Characters

The anchor operators allow us to do this. When we start a regular

expression with a ^, it anchors the regular expression to the beginning of the

string. This means that whatever the regular expression starts with must be

matched at the beginning of the string. For example, ^aa* will not match strings

 399

that contain one or more a's; rather it matches strings that start with one or

more a's.

We can also use the $ at the end of the string to anchor the regular

expression at the end of the string.

Pattern Matching

Now that you are familiar with some of the basics of regular expressions,

you probably want to know how to use them in Perl. Doing so is very

easy. There is an operator, =~, that you can use to match a regular

expression against scalar variables. Regular expressions in Perl are

placed between two forward slashes (i.e., //). The whole $scalar =~ //

expression will evaluate to 1 if a match occurs, and undef if it does not.

CGI Environment Variables

Environment variables are a series of hidden values that the web server

sends to every CGI program you run. Your program can parse them and use the

data they send. Environment variables are stored in a hash named %ENV:

Key Value

DOCUMENT_ROOT The root directory of your server

HTTP_COOKIE The visitor's cookie, if one is set

HTTP_HOST The hostname of the page being attempted

HTTP_REFERER The URL of the page that called your program

HTTP_USER_AGENT The browser type of the visitor

HTTPS "on" if the program is being called through a secure server

PATH The system path your server is running under

QUERY_STRING The query string (see GET, below)

REMOTE_ADDR The IP address of the visitor

REMOTE_HOST The hostname of the visitor (if your server has reverse-

name-lookups on; otherwise this is the IP address again)

 400

REMOTE_PORT The port the visitor is connected to on the web server

REMOTE_USER The visitor's username (for .htaccess-protected pages)

REQUEST_METHOD GET or POST

REQUEST_URI The interpreted pathname of the requested document or

CGI (relative to the document root)

SCRIPT_FILENAME The full pathname of the current CGI

SCRIPT_NAME The interpreted pathname of the current CGI (relative to

the document root)

SERVER_ADMIN The email address for your server's webmaster

SERVER_NAME Your server's fully qualified domain name (e.g.

www.cgi101.com)

SERVER_PORT The port number your server is listening on

SERVER_SOFTWARE The server software you're using (e.g. Apache 1.3)

Form processing

A Simple Form Using GET

There are two ways to send data from a web form to a CGI program: GET

and POST. These methods determine how the form data is sent to the server.

With the GET method, the input values from the form are sent as part of

the URL and saved in the QUERY_STRING environment variable. With the POST

method, data is sent as an input stream to the program. You can set the

QUERY_STRING value in a number of ways. For example, here are a number of

direct links to the env.cgi program:

Try opening each of these in your web browser. Notice that the value for

QUERY_STRING is set to whatever appears after the question mark in the URL

itself.

You can also process simple forms using the GET method. Start a new

HTML document called envform.html, and enter this form:

Processing Forms using POST

 401

Most forms you create will send their data using the POST method. POST

is more secure than GET, since the data isn't sent as part of the URL, and you

can send more data with POST. Also, your browser, web server, or proxy server

may cache GET queries, but posted data is resent each time.

Your web browser, when sending form data, encodes the data being sent.

Alphanumeric characters are sent as themselves; spaces are converted to plus

signs (+); other characters — like tabs, quotes, etc. — are converted to "%HH" —

a percent sign and two hexadecimal digits representing the ASCII code of the

character. This is called URL encoding.

Sending Email

There are several ways to send mail. We'll be using the sendmail

programe under Unix. Before you can write your form-to-mail CGI program,

you'll need to figure out where the sendmail program is installed on your

webserver.

Since we're using the -T flag for taint checking, the first thing you need

to do before connecting to sendmail is set the PATH environment variable:

$ENV{PATH} = "/usr/sbin";

The path should be the directory where sendmail is located; if sendmail

is in /usr/sbin/sendmail, then $ENV{PATH} should be "/usr/sbin". If it's in

/var/lib/sendmail, then $ENV{PATH} should be "/var/lib".

Next you open a pipe to the sendmail program:

open (MAIL, "|/usr/sbin/sendmail -t -oi") or

 die "Can't fork for sendmail: $!\n";

The pipe (which is indicated by the | character) causes all of the output

printed to that filehandle (MAIL) to be fed directly to the /usr/sbin/sendmail

program as if it were standard input to that program. Several flags are also

passed to sendmail:

-t Read message for recipients. To:, Cc:, and Bcc: lines will be

scanned for recipient addresses

 402

-

oi

 Ignore dots alone on lines by themselves in incoming messages.

The -t flag tells sendmail to look at the message headers to determine

who the mail is being sent to. You'll have to print all of the message headers

yourself:

my $recipient = 'recipient@b-u.ac.in;

print MAIL "From: sender\@b-u.ac.in\n";

print MAIL "To: $recipient\n";

print MAIL "Subject: Guestbook Form\n\n";

Remember that you can safely put an @-sign inside a single-quoted

string, like 'recipient@b-u.ac.in', or you can escape the @-sign in double-quoted

strings by using a backslash ("sender\@b-u.ac.in").

The message headers are complete when you print a single blank line

following the header lines. We've accomplished this by printing two newlines at

the end of the subject header:

print MAIL "Subject: Guestbook Form\n\n";

After that, you can print the body of your message. Let's try it. Start a

new file named guestbook.cgi, and edit it as follows. You don't need to include

the comments in the following code; they are just there to show you what's

happening.

Verifying user name and password

Verifying user name and password is a common security practice on the

Internet. In normal circumstances, all the user names and their corresponding

passwords are stored in a file on the server. Therefore, to verify user name and

password for a particular user on the Internet, a CGI application is required.

Since we don't have encryption at this moment, the implementation of

password checking is relatively simple. Suppose you have password file called

password.txt containing all the user names and passwords. To check a

password for a particular user it is necessary to read this file and perform the

comparison.

 403

17.10. Lesson end Activities

 1. What is CGI module?

 2. Explain Perl Regular expression.

 3. What are the function available in Perl for string processing?

17.11. Check your progress

1. Write a perl program for validating user name and password.

 2. How Form processing is implemented in Perl?

17.12. Reference

1. Internet & World Wide Web, H.M. Deitel, P.J.Deitel and A.B.Goldberg,

Prentice Hall.

2. www.perl.org.

 404

 405

Lesson 18

PERL ODBC and Cookies

Contents

18.0. Aim and Objective

18.1. Introduction

18.2. SQL

18.3. Perl DBI

18.4. Cookies

18.5. Let us sum Up

18.6. Lesson end Activities

18.7. Check your Progress

18.8. Reference

18.0. Aim and Objective

• To understand PERL DBI

• To learn database connectivity

• To learn cookies

18.1. Introduction

A relational database is a bunch of rectangular tables. Each row of a

table is a record about one person or thing; the record contains several pieces of

information called fields. Here is an example table:

LASTNAME FIRSTNAME ID POSTAL_CODE AGE SEX

Gauss Karl 119 19107 30 M

Smith Mark 3 T2V 3V4 53 M

Noether Emmy 118 19107 31 F

Smith Jeff 28 K2G 5J9 19 M

Hamilton William 247 10139 2 M

 406

18.2. SQL

SQL stands for Structured Query Language. It was invented at IBM in the

1970's. It's a language for describing searches and modifications to a relational

database. SQL was a huge success, probably because it's incredibly simple and

anyone can pick it up in ten minutes. As a result, all the important database

systems support it in some fashion or another.

Important SQL commands :

SELECT

Find all the records that have a certain property

INSERT

Add new records

DELETE

Remove old records

UPDATE

Modify records that are already there

Those are the four most important SQL commands, also called queries.

Suppose that the example table above is named people. Here are examples of

each of the four important kinds of queries:

 SELECT firstname FROM people WHERE lastname = 'Smith'

(Locate the first names of all the Smiths.)

 DELETE FROM people WHERE id = 3

(Delete Mark Smith from the table)

 UPDATE people SET age = age+1 WHERE id = 247

(William Hamilton just had a birthday.)

 INSERT INTO people VALUES ('Euler', 'Leonhard', 248, NULL, 58, 'M')

(Add Leonhard Euler to the table.)

 407

18.3. Perl DBI

Perl's DBI (`Database Interface') module was written by Tim Bunce. DBI

is designed to protect you from the details of the vendor libraries. It has a very

simple interface for saying what SQL queries you want to make, and for getting

the results back. DBI doesn't know how to talk to any particular database, but

it does know how to locate and load in DBD (`Database Driver') modules. The

DBD modules have the vendor libraries in them and know how to talk to the

real databases; there is one DBD module for every different database.

When you ask DBI to make a query for you, it sends the query to the

appropriate DBD module, which spins around three times or drinks out of its

sneaker or whatever is necessary to communicate with the real database. When

it gets the results back, it passes them to DBI. Then DBI gives you the results.

Since your program only has to deal with DBI, and not with the real database,

you don't have to worry about barking like a chicken.

DBI Architecture

The DBI architecture is split into two main groups of software: the DBI

itself, and the drivers. The DBI defines the actual DBI programming interface,

routes method calls to the appropriate drivers, and provides various support

services to them. Specific drivers are implemented for each different type of

database and actually perform the operations on the databases. The following

figure illustrates this architecture.

Figure.1 : The DBI Architecture

 408

The following figure shows the flow of data from a Perl script through to

the database.

Figure 2: Data flow through DBI

Under this architecture, it is relatively straightforward to implement a

driver for any type of database. All that is required is to implement the methods

defined in the DBI specification, as supported by the DBI module, in a way that

is meaningful for that database. The data returned from this module is passed

back into the DBI module, and from there it is returned to the Perl program. All

the information that passes between the DBI and its drivers is standard Perl

datatypes, thereby preserving the isolation of the DBI module from any

knowledge of databases.

The separation of the drivers from the DBI itself makes the DBI a

powerful programming interface that can be extended to support almost any

database available today. Drivers currently exist for many popular databases

including Oracle, Informix, mSQL, MySQL, Ingres, Sybase, DB2, Empress,

SearchServer, and PostgreSQL. There are even drivers for XBase and CSV files.

Drivers are also called database drivers, or DBDs, after the namespace in

which they are declared. For example, Oracle uses DBD::Oracle, Informix uses

DBD::Informix, and so on. A useful tip in remembering the DBI architecture is

that DBI can stand for DataBase Independent and DBD can stand for DataBase

Dependent.

 409

Because DBI uses Perl's object-orientation features, it is extremely

simple to initialize DBI for use within your programs. This can be achieved by

adding the line:

 use DBI;

to the top of your programs. This line locates and loads the core DBI module.

Individual database driver modules are loaded as required, and should

generally not be explicitly loaded.

Handles

The DBI defines three main types of objects that you may use to interact

with databases. These objects are known as handles. There are handles for

drivers, which the DBI uses to create handles for database connections, which,

in turn, can be used to create handles for individual database commands,

known as statements. The following figure illustrates the overall structure of the

way in which handles are related, and their meanings are described in the

following sections.

 Figure 3. DBI handles

Driver Handles

 410

Driver handles represent loaded drivers and are created when the driver

is loaded and initialized by the DBI. There is exactly one driver handle per

loaded driver. Initially, the driver handle is the only contact the DBI has with

the driver, and at this stage, no contact has been made with any database

through that driver.

The only two significant methods available through the driver handle are

data_sources(), to enumerate what can be connected to, and connect(), to

actually make a connection. These methods are more commonly invoked as DBI

class methods, however, which we will discuss in more detail later in this

chapter.

Since a driver handle completely encapsulates a driver, there's no reason

why multiple drivers can't be simultaneously loaded. This is part of what makes

the DBI such a powerful interface.

Within the DBI specification, a driver handle is usually referred to as

$drh.

Driver handles should not normally be referenced within your programs.

The actual instantiation of driver handles happens ``under the hood'' of DBI,

typically when DBI->connect() is called.

Database Handles

Database handles are the first step towards actually doing work with the

database, in that they encapsulate a single connection to a particular database.

Prior to executing SQL statements within a database, we must actually connect

to the database. This is usually achieved through the DBI's connect() method:

 $dbh = DBI->connect($data_source, ...);

Within the DBI specification and sample code, database handles are usually

referred to as $dbh.

Statement Handles

Statement handles are the final type of object that DBI defines for

database interaction and manipulation. These handles actually encapsulate

individual SQL statements to be executed within the database.

Statement handles are children of their corresponding database handle.

Since statement handles are objects in their own right, data within one

 411

statement is protected from tampering or modification by other statement

handles.

Within the DBI specification and sample code, statement handles are

generally referred to as $sth.

Data Source Names

When connecting to a database via the DBI, you need to tell the DBI

where to find the database to connect to. For example, the database driver

might require a database name, or a physical machine name upon which the

database resides. This information is termed a data source name, and of all the

aspects of DBI, this is possibly the most difficult to standardize due to the sheer

number and diversity of connection syntaxes.

The DBI requires the data source name to start with the characters dbi:,

much like a URL begins with http:, and then the name of the driver, followed by

another colon--for example, dbi:Oracle:. Any text that follows is passed to the

driver's own connect() method to interpret as it sees fit. Most drivers expect

either a simple database name or, more often, a set of one or more name/value

pairs separated with semicolons. Some common examples are listed later in this

section.

DBI offers two useful methods for querying which data sources are

available to you for each driver you have installed on your system.

Firstly, you can get a list of all the available drivers installed on your

machine by using the DBI->available_drivers() method. This returns a list with

each element containing the data source prefix of an installed driver, such as

dbi:Informix:.

Secondly, you can invoke the DBI->data_sources() method against one or

more of the drivers returned by the DBI->available_drivers() method to

enumerate which data sources are known to the driver. Calling the

data_sources() method will actually load the specified driver and validate that it

is completely and correctly installed. Because DBI dies if it can't load and

initialize a driver, this method should be called inside an eval{} block if you need

to catch that error.

Connection

 412

In the case of simple databases, such as flat-file or Berkeley DB files,

``connecting'' is usually as simple as opening the files for reading or using the

tie mechanism. However, in larger database systems, connecting may be

considerably more complicated.

By looking at a broad spectrum of database systems, the information

required to connect can be boiled down to:

1. The data source name, a string containing information specifying the

driver to use, what database you wish to connect to, and possibly its

whereabouts. This argument takes the format discussed in the previous

section and is highly database-specific.

2. The username that you wish to connect to the database as. To elaborate

on the concept of usernames a little further, some databases partition

the database into separate areas, called schemas, in which different

users may create tables and manipulate data. Users cannot affect tables

and data created by other users. This setup is similar to accounts on a

multiuser computer system, in that users may create their own files,

which can be manipulated by them, but not necessarily by other users.

In fact, users may decide to disallow all access to their files, or tables,

from all other users, or allow access to a select group or all users.[6]

Most major database systems enforce a similar security policy, usually

with an administrator having access to an account that allows them to

read, modify, and delete any user's tables and data. All other users must

connect as themselves. On these systems, your database username may

be the same as your system login username, but it doesn't have to be.

More minimal database systems may not have any concept of username-

based authentication, but you still need to supply the username and

password arguments, typically as empty strings.

3. The password associated with the supplied username.

In light of these common arguments, the syntax for connecting to databases

using DBI is to use the connect() call, defined as follows:

 $dbh = DBI->connect($data_source, $username, $password, \%attr);

 413

The final argument, \%attr, is optional and may be omitted. \%attr is a

reference to a hash that contains handle attributes to be applied to this

connection. One of the most important items of the information supplied in this

hash is whether or not automatic error handling should be supplied by DBI. We

will discuss this in further detail in the following section, but the two common

attributes are called RaiseError and PrintError, which cause the DBI to die or

print a warning automatically when a database error is detected.

This method, when invoked, returns a database handle if the connection

has been successfully made to the database. Upon failure, the value undef is

returned.

To illustrate the DBI->connect() method, assume that we have an Oracle

database called archaeo. To connect to this database, we might use the

following code:

#!/usr/bin/perl -w

ch04/connect/ex1: Connects to an Oracle database.

use DBI; # Load the DBI module

Perform the connection using the Oracle driver

my $dbh = DBI->connect("dbi:Oracle:archaeo", "username", "password")

 or die "Can't connect to Oracle database: $DBI::errstr\n";

exit;

Disconnection

Explicit disconnection from the database is not strictly necessary if you

are exiting from your program after you have performed all the work, but it is a

good idea. We strongly recommend that you get into the habit of disconnecting

explicitly.

DBI provides a method through which programmers may disconnect a

given database handle from its database. This is good practice, especially in

programs in which you have performed multiple connections or will be carrying

out multiple sequential connections.

The method for performing disconnections is:

 414

 $rc = $dbh->disconnect();

According to this definition, disconnect() is invoked against a specific

database handle. This preserves the notion that database handles are

completely discrete. With multiple database handles active at any given time,

each one must explictly be disconnected.

An example of using disconnect() might look like:

#!/usr/bin/perl -w

ch04/disconnect/ex1: Connects to an Oracle database

with auto-error-reporting disabled

then performs an explicit disconnection.

use DBI; # Load the DBI module

Perform the connection using the Oracle driver

my $dbh = DBI->connect("dbi:Oracle:archaeo", "username", "password" ,

{

 PrintError => 0

 })

 or die "Can't connect to Oracle database: $DBI::errstr\n";

Now, disconnect from the database

$dbh->disconnect

 or warn "Disconnection failed: $DBI::errstr\n";

 exit;

Upon successful disconnection, the return value will be true. Otherwise,

it will be false. In practice, failure to disconnect usually means that the

connection has already been lost for some reason. After disconnecting the

database handle can't be used for anything worthwhile.

The following program use a simple SQL statement

use strict;

use DBI;

 415

my $dbh = DBI->connect(‘dbi:Oracle:orcl’,’ramesh’,’ramspassword’, {

RaiseError => 1, AutoCommit => 0 }) || die “Database connection not

made :

$DBI::errstr”;

my $sql = qq { CREATE TABLE employees (id INTEGER NOT NULL,

name

VARCHAR2(128), title VARCHAR2(128), phone CHAR(8)) };

$dbh->do ($sql);

$dbh->disconnect();

18.4. Cookies

The Web is designed to be stateless. Each document sent from server to

browser is a unique transaction. Having sent a document, the server forgets

about it, which greatly simplifies programming a Web server. But it doesn't

simplify writing Web applications. To implement shopping carts, user

preferences, or detailed visitor tracking, you need to recognize a user from one

page to the next. By the time the Web needed this level of sophistication, it was

too late to turn around and make it support states. So Netscape invented

cookies.

A cookie is like an ID card that a server issues to a browser. Every time

the browser requests something from the server, it flashes the ID card, with all

of the information left by the server, as part of the transaction. To track people

on your Web site, you issue them a cookie with identifying information on their

first visit to your server. Every subsequent request they make will include that

cookie, from which you can extract their identity.

Cookies aren't foolproof. Browsers often store cookie data in readable

files, so don't use them to hold information such as credit card numbers or

passwords. And the browser, which must send cookies back to the server, may

not have them enabled. It's informative to clear the cookies from your Web

browser, disable cookie functionality, then surf for a while to see how many of

your favorite sites no longer work.

 416

Cookies are also pretty limited in what they can hold. Netscape's original

specification set limits at 4K of cookie data, 20 cookies per domain, and 300

cookies per browser. Browsers past their limit may prematurely expire, that is

delete, older cookies. Some browsers go beyond these limits, but you can't rely

on it.

Cookie attributes

Cookies contain a lot of information, the most useful being the name, a

string that identifies the cookie, and the value, the data associated with that

name.

If Web server www.example.com sends a cookie to your browser, your

browser won't send it back to just any old server. The cookie has an associated

domain, (such as .example.com or .intranet.example.com), and the browser

sends the cookie only to servers that match that domain.

You can even limit which pages on the server receive the cookie with the

path cookie option. A cookie with the path /staff will be sent to

/staff/contacts.html or /staff-images/kevin.jpg, but not to /~loser/cookie-

grabber.cgi.

In addition, you can specify that the cookie should be sent only for

secure (HTTPS) requests. You might use this if you don't trust the network to be

secure, but you do trust the client machine. However, remember that the Web

browser may record the cookie in a file, so if that file can be read by a malicious

hacker, it defeats the purpose of securing the network transmission.

And finally, you can set an expiration time for the cookie. A cookie with

no expiration time disappears when the browser shuts down. You must specify

expiration times precisely, such as Sun, 10-10-00 15:02:19 GMT, but dates

such as these are inconvenient to work with. Fortunately, the CGI.pm module

that we'll use to create and manipulate cookies has a simple notation for dates

relative to the current date and time. The format for these relative dates and

times is a positive or negative offset number, and a character representing the

units (days, months, minutes, and so on). For example:

 417

Creating a cookie

Let's begin by writing a program that creates a cookie and sends it to the

browser. This program has two parts: a form for the user to enter something

we'll remember, and a page to display when the cookie is set.

First, the form:

#!/usr/bin/perl -w

cookie-set.cgi - set a cookie

 use CGI qw(:standard);

 unless (param()) {

 # display form

 print

 header(),

 start_html("Cookie Baker"),

 h1("Cookie Baker"),

 start_form(),

 p("What's your name?", textfield("NAME")),

 submit(),

 end_form(),

 end_html();

cookie-set.cgi will be continued ...

 418

Setting a cookie is a two-part process: first, create it with the cookie()

function, then pass it to the browser when you send the HTTP header. In the

remaining code, $to_set holds the cookie we create, and the -cookie argument to

the header() function passes it to the browser.

cookie-set.cgi continues ...

} else {

 # process form and set cookie

 $name = param("NAME");

 $to_set = cookie(-name => "username",

 -value => $name,

 -expires => "+30s",

 -path => "/~gnat/zd",

);

 print

 header(-cookie => $to_set),

 start_html("Thanks!"),

 h1("Thanks for using the Cookie Baker"),

 p("I set your name to ", b($name),

 " and I will remember this if you visit ",

 a({-href => "cookie-get.cgi"}, "here"),

 " within the next 30 seconds."),

 end_html();

}

If we were setting multiple cookies, we'd pass an array reference to the

header() function:

header(-cookie => [$name_cookie, $age_cookie, $city_cookie])

Fetch

Fetching cookies is even easier. Just call the cookie() function with the

name of the cookie. The function returns the value of the cookie. The CGI.pm

module cannot return the other parameters of a cookie, such as domain, path,

and expiration time.

 419

#!/usr/bin/perl -w

cookie-get.cgi - fetch the value of a cookie

use CGI qw(:standard);

$name = cookie("username");

print

 header(),

 start_html("Hello $name"),

 h1("Hello " . $name || "Stranger");

if ($name) {

 print p("See, I remembered your name!");

} else {

 print p("The cookie must have expired.");

}

print end_html();

18.5. Let us sum Up

A relational database is a bunch of rectangular tables. Each row of a

table is a record about one person or thing; the record contains several pieces of

information called fields.

SQL

SQL stands for Structured Query Language. It was invented at IBM in the

1970's. It's a language for describing searches and modifications to a relational

database. SQL was a huge success, probably because it's incredibly simple and

anyone can pick it up in ten minutes. As a result, all the important database

systems support it in some fashion or another.

Perl DBI

Perl's DBI (`Database Interface') module was written by Tim Bunce. DBI

is designed to protect you from the details of the vendor libraries. It has a very

simple interface for saying what SQL queries you want to make, and for getting

the results back. DBI doesn't know how to talk to any particular database, but

it does know how to locate and load in DBD (`Database Driver') modules. The

 420

DBD modules have the vendor libraries in them and know how to talk to the

real databases; there is one DBD module for every different database.

DBI Architecture

The DBI architecture is split into two main groups of software: the DBI

itself, and the drivers. The DBI defines the actual DBI programming interface,

routes method calls to the appropriate drivers, and provides various support

services to them. Specific drivers are implemented for each different type of

database and actually perform the operations on the databases.

Drivers are also called database drivers, or DBDs, after the namespace in

which they are declared. For example, Oracle uses DBD::Oracle, Informix uses

DBD::Informix, and so on. A useful tip in remembering the DBI architecture is

that DBI can stand for DataBase Independent and DBD can stand for DataBase

Dependent.

Because DBI uses Perl's object-orientation features, it is extremely

simple to initialize DBI for use within your programs. This can be achieved by

adding the line:

 use DBI;

to the top of your programs. This line locates and loads the core DBI module.

Individual database driver modules are loaded as required, and should

generally not be explicitly loaded.

The DBI defines three main types of objects that you may use to interact

with databases. These objects are known as handles. There are handles for

drivers, which the DBI uses to create handles for database connections, which,

in turn, can be used to create handles for individual database commands,

known as statements.

Driver handles represent loaded drivers and are created when the driver

is loaded and initialized by the DBI. There is exactly one driver handle per

loaded driver. Initially, the driver handle is the only contact the DBI has with

the driver, and at this stage, no contact has been made with any database

through that driver.

Within the DBI specification, a driver handle is usually referred to as

$drh.

 421

Driver handles should not normally be referenced within your programs.

The actual instantiation of driver handles happens ``under the hood'' of DBI,

typically when DBI->connect() is called.

Database handles are the first step towards actually doing work with the

database, in that they encapsulate a single connection to a particular database.

Prior to executing SQL statements within a database, we must actually connect

to the database. This is usually achieved through the DBI's connect() method:

 $dbh = DBI->connect($data_source, ...);

Within the DBI specification and sample code, database handles are usually

referred to as $dbh.

Statement handles are the final type of object that DBI defines for

database interaction and manipulation. These handles actually encapsulate

individual SQL statements to be executed within the database.

Statement handles are children of their corresponding database handle.

Since statement handles are objects in their own right, data within one

statement is protected from tampering or modification by other statement

handles.

Within the DBI specification and sample code, statement handles are

generally referred to as $sth.

When connecting to a database via the DBI, you need to tell the DBI

where to find the database to connect to. The DBI requires the data source

name to start with the characters dbi:, much like a URL begins with http:, and

then the name of the driver, followed by another colon--for example, dbi:Oracle:.

Any text that follows is passed to the driver's own connect() method to interpret

as it sees fit. Most drivers expect either a simple database name or, more often,

a set of one or more name/value pairs separated with semicolons. Some

common examples are listed later in this section.

DBI offers two useful methods for querying which data sources are

available to you for each driver you have installed on your system.

 422

Firstly, you can get a list of all the available drivers installed on your

machine by using the DBI->available_drivers() method. This returns a list with

each element containing the data source prefix of an installed driver, such as

dbi:Informix:.

Secondly, you can invoke the DBI->data_sources() method against one or

more of the drivers returned by the DBI->available_drivers() method to

enumerate which data sources are known to the driver. Calling the

data_sources() method will actually load the specified driver and validate that it

is completely and correctly installed. Because DBI dies if it can't load and

initialize a driver, this method should be called inside an eval{} block if you need

to catch that error.

In light of these common arguments, the syntax for connecting to databases

using DBI is to use the connect() call, defined as follows:

 $dbh = DBI->connect($data_source, $username, $password, \%attr);

Explicit disconnection from the database is not strictly necessary if you

are exiting from your program after you have performed all the work, but it is a

good idea. We strongly recommend that you get into the habit of disconnecting

explicitly.

DBI provides a method through which programmers may disconnect a

given database handle from its database. This is good practice, especially in

programs in which you have performed multiple connections or will be carrying

out multiple sequential connections.

The method for performing disconnections is:

 $rc = $dbh->disconnect();

Cookies

The Web is designed to be stateless. Each document sent from server to

browser is a unique transaction. Having sent a document, the server forgets

about it, which greatly simplifies programming a Web server. But it doesn't

simplify writing Web applications. To implement shopping carts, user

preferences, or detailed visitor tracking, you need to recognize a user from one

page to the next. By the time the Web needed this level of sophistication, it was

 423

too late to turn around and make it support states. So Netscape invented

cookies.

Cookie attributes

Cookies contain a lot of information, the most useful being the name, a

string that identifies the cookie, and the value, the data associated with that

name.

Setting a cookie is a two-part process: first, create it with the cookie()

function, then pass it to the browser when you send the HTTP header. In the

remaining code, $to_set holds the cookie we create, and the -cookie argument to

the header() function passes it to the browser.

Fetching cookies is even easier. Just call the cookie() function with the

name of the cookie. The function returns the value of the cookie. The CGI.pm

module cannot return the other parameters of a cookie, such as domain, path,

and expiration time.

18.6. Lesson end Activities

1. What is Perl DBI?

2. Why we need cookies?

18.7. Check your progress

1. Write a perl program to list out from the database, employees whose

salary is more than Rs. 20,000.

2. Write a perl program to set and destroy cookies.

18.8. Reference

1. Internet & World Wide Web, H.M. Deitel, P.J.Deitel and A.B.Goldberg,

Prentice Hall.

2. www.perl.org

 424

 425

Lesson 19

XML

Contents

19.0. Aim and Objectives

19.1. Introduction to XML

19.2. XML Document Type Definition

19.3. XML Parser

19.4. XHTML

19.5. Let us Sum Up

19.6. Lesson end Activities

19.7. Check your progress

19.8. Reference

19.0 Aim and objectives

• To understand XML

• To learn XML to write simple program

19.1. Introduction to XML

XML was designed to transport and store data. HTML was designed to

display data.XML stands for EXtensible Markup Language. XML is a markup

language much like HTML. XML was designed to carry data, not to display data.

XML tags are not predefined. You must define your own tags. XML is designed

to be self-descriptive. XML is a W3C Recommendation

The Difference Between XML and HTML

XML is not a replacement for HTML. XML and HTML were designed with

different goals.XML was designed to transport and store data, with focus on

what data is.

HTML was designed to display data, with focus on how data looks. HTML

is about displaying information, while XML is about carrying information.

 426

XML Does not DO Anything

Maybe it is a little hard to understand, but XML does not DO anything.

XML was created to structure, store, and transport information.

The following example is a note to Tove from Jani, stored as XML:

<note>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

The note above is quite self descriptive. It has sender and receiver

information, it also has a heading and a message body.

But still, this XML document does not DO anything. It is just pure

information wrapped in tags. Someone must write a piece of software to send,

receive or display it.

XML is nothing special. It is just plain text. Software that can handle

plain text can also handle XML. However, XML-aware applications can handle

the XML tags specially. The functional meaning of the tags depends on the

nature of the application.

With XML You Invent Your Own Tags. The tags in the example above

(like <to> and <from>) are not defined in any XML standard. These tags are

"invented" by the author of the XML document. That is because the XML

language has no predefined tags. The tags used in HTML (and the structure of

HTML) are predefined. HTML documents can only use tags defined in the HTML

standard (like <p>, <h1>, etc.). XML allows the author to define his own tags

and his own document structure.

XML is Not a Replacement for HTML. XML is a complement to HTML. It is

important to understand that XML is not a replacement for HTML. In most web

applications, XML is used to transport data, while HTML is used to format and

display the data

 427

19.2. Introduction to Document Type definition (DTD)

The purpose of a DTD is to define the legal building blocks of an XML

document. It defines the document structure with a list of legal elements. A

DTD can be declared inline in your XML document, or as an external reference.

XML provides an application independent way of sharing data. With a DTD,

independent groups of people can agree to use a common DTD for

interchanging data. Your application can use a standard DTD to verify that data

that you receive from the outside world is valid. You can also use a DTD to

verify your own data.

XML – Structuring data

The building blocks of XML documents

XML documents (and HTML documents) are made up by the following

building blocks:

Elements, Tags, Attributes, Entities, PCDATA, and CDATA

Elements

Elements are the main building blocks of both XML and HTML

documents.

Examples of HTML elements are "body" and "table". Examples of XML

elements could be "note" and "message". Elements can contain text, other

elements, or be empty. Examples of empty HTML elements are "hr", "br" and

"img".

Tags

Tags are used to markup elements.

A starting tag like <element_name> mark up the beginning of an element,

and an ending tag like </element_name> mark up the end of an element.

Examples:

A body element: <body>body text in between</body>.

A message element: <message>some message in between</message>

Attributes

Attributes provide extra information about elements.

 428

Attributes are placed inside the start tag of an element. Attributes come

in name/value pairs. The following "img" element has an additional information

about a source file:

The name of the element is "img". The name of the attribute is "src". The

value of the attribute is "computer.gif". Since the element itself is empty it is

closed by a " /".

PCDATA

PCDATA means parsed character data.

Think of character data as the text found between the start tag and the

end tag of an XML element. PCDATA is text that will be parsed by a parser.

Tags inside the text will be treated as markup and entities will be expanded.

CDATA

CDATA also means character data.

CDATA is text that will NOT be parsed by a parser. Tags inside the text

will NOT be treated as markup and entities will not be expanded.

Entities

Entities as variables used to define common text. Entity references are

references to entities. Most of you will known the HTML entity reference:

" " that is used to insert an extra space in an HTML document. Entities

are expanded when a document is parsed by an XML parser.

The following entities are predefined in XML:

Entity References Character

< <

> >

& &

 429

" "

' '

DTD - Elements

Declaring an Element

In the DTD, XML elements are declared with an element declaration. An

element declaration has the following syntax:

<!ELEMENT element-name (element-content)>

Empty elements

Empty elements are declared with the keyword EMPTY inside the

parentheses:

<!ELEMENT element-name (EMPTY)>

example:

<!ELEMENT img (EMPTY)>

Elements with data

Elements with data are declared with the data type inside parentheses:

<!ELEMENT element-name (#CDATA)>

or

<!ELEMENT element-name

(#PCDATA)>

or

<!ELEMENT element-name (ANY)>

example:

<!ELEMENT note (#PCDATA)>

 430

#CDATA means the element contains character data that is not supposed

to be parsed by a parser.

#PCDATA means that the element contains data that IS going to be

parsed by a parser.

The keyword ANY declares an element with any content.

If a #PCDATA section contains elements, these elements must also be

declared.

Elements with children (sequences)

Elements with one or more children are defined with the name of the

children elements inside the parentheses:

<!ELEMENT element-name (child-element-name)>

or

<!ELEMENT element-name (child-element-name,child-element-

name,.....)>

example:

<!ELEMENT note (to,from,heading,body)>

When children are declared in a sequence separated by commas, the

children must appear in the same sequence in the document. In a full

declaration, the children must also be declared, and the children can

also have children. The full declaration of the note document will be:

<!ELEMENT note

(to,from,heading,body)>

<!ELEMENT to (#CDATA)>

<!ELEMENT from (#CDATA)>

<!ELEMENT heading (#CDATA)>

<!ELEMENT body (#CDATA)>

Wrapping

If the DTD is to be included in your XML source file, it should be

wrapped in a DOCTYPE definition with the following syntax:

 431

<!DOCTYPE root-element [element-

declarations]>

example:

<?xml version="1.0"?>

<!DOCTYPE note [

 <!ELEMENT note (to,from,heading,body)>

 <!ELEMENT to (#CDATA)>

 <!ELEMENT from (#CDATA)>

 <!ELEMENT heading (#CDATA)>

 <!ELEMENT body (#CDATA)>

]>

<note>

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend</body>

</note>

Declaring only one occurrence of the same element

<!ELEMENT element-name (child-

name)>

example

<!ELEMENT note (message)>

The example declaration above declares that the child element message

can only occur one time inside the note element.

Declaring minimum one occurrence of the same element

<!ELEMENT element-name (child-

name+)>

example

 432

<!ELEMENT note (message+)>

The + sign in the example above declares that the child element message

must occur one or more times inside the note element.

Declaring zero or more occurrences of the same element

<!ELEMENT element-name (child-name*)>

example

<!ELEMENT note (message*)>

The * sign in the example above declares that the child element message

can occur zero or more times inside the note element.

Declaring zero or one occurrences of the same element

<!ELEMENT element-name (child-name?)>

example

<!ELEMENT note (message?)>

The ? sign in the example above declares that the child element message

can occur zero or one times inside the note element.

Declaring mixed content

example

<!ELEMENT note (to+,from,header,message*,#PCDATA)>

The example above declares that the element note must contain at least

one to child element, exactly one from child element, exactly one header, zero

or more message, and some other parsed character data as well. Puh!

DTD - Attributes

Declaring Attributes

In the DTD, XML element attributes are declared with an ATTLIST

declaration. An attribute declaration has the following syntax:

<!ATTLIST element-name attribute-name attribute-type default-value>

 433

As you can see from the syntax above, the ATTLIST declaration defines

the element which can have the attribute, the name of the attribute, the type of

the attribute, and the default attribute value.

The attribute-type can have the following values:

Value Explanation

CDATA The value is character data

(eval|eval|..) The value must be an enumerated value

ID The value is an unique id

IDREF The value is the id of another element

IDREFS The value is a list of other ids

NMTOKEN The value is a valid XML name

NMTOKENS The value is a list of valid XML names

ENTITY The value is an entity

ENTITIES The value is a list of entities

NOTATION The value is a name of a notation

xml: The value is predefined

The attribute-default-value can have the following values:

Value Explanation

#DEFAULT value The attribute has a default value

#REQUIRED The attribute value must be included in the element

#IMPLIED The attribute does not have to be included

#FIXED value The attribute value is fixed

 434

Attribute declaration example

DTD example:

<!ELEMENT square EMPTY>

 <!ATTLIST square width CDATA "0">

XML example:

<square width="100"></square>

In the above example the element square is defined to be an empty

element with the attributes width of type CDATA. The width attribute

has a default value of 0.

Default attribute value

Syntax:

<!ATTLIST element-name attribute-name CDATA "default-

value">

DTD example:

<!ATTLIST payment type CDATA "check">

XML example:

<payment type="check">

Specifying a default value for an attribute, assures that the attribute will

get a value even if the author of the XML document didn't include it.

Implied attribute

Syntax:

<!ATTLIST element-name attribute-name attribute-type

#IMPLIED>

DTD example:

<!ATTLIST contact fax CDATA #IMPLIED>

 435

XML example:

<contact fax="555-667788">

Use an implied attribute if you don't want to force the author to include

an attribute and you don't have an option for a default value either.

Required attribute

Syntax:

<!ATTLIST element-name attribute_name attribute-type

#REQUIRED>

DTD example:

<!ATTLIST person number CDATA #REQUIRED>

XML example:

<person number="5677">

Use a required attribute if you don't have an option for a default value,

but still want to force the attribute to be present.

Fixed attribute value

Syntax:

<!ATTLIST element-name attribute-name attribute-type #FIXED

"value">

DTD example:

<!ATTLIST sender company CDATA #FIXED "Microsoft">

XML example:

<sender company="Microsoft">

Use a fixed attribute value when you want an attribute to have a fixed

value without allowing the author to change it. If an author includes another

value, the XML parser will return an error.

 436

Enumerated attribute values

Syntax:

<!ATTLIST element-name attribute-name (eval|eval|..) default-

value>

DTD example:

<!ATTLIST payment type (check|cash) "cash">

XML example:

<payment type="check">

or

<payment type="cash">

Use enumerated attribute values when you want the attribute values to

be one of a fixed set of legal values.

DTD - Entities

Entities

Entities as variables used to define shortcuts to common text. Entity

references are references to entities. Entities can be declared internal.

Entities can be declared external .

Internal Entity Declaration

Syntax:

<!ENTITY entity-name "entity-value">

DTD Example:

<!ENTITY writer "Jan Egil Refsnes.">

<!ENTITY copyright "Copyright

XML101.">

XML example:

<author>&writer;©right;</author>

External Entity Declaration

 437

Syntax:

<!ENTITY entity-name SYSTEM "URI/URL">

DTD Example:

<!ENTITY writer SYSTEM

"http://www.xml101.com/entities/entities.xml">

<!ENTITY copyright SYSTEM

"http://www.xml101.com/entities/entities.dtd">

XML example:

<author>&writer;©right;</author>

19.3. XML Parser

Most browsers have a build-in XML parser to read and manipulate XML.

The parser converts XML into a JavaScript accessible object.

Parsing XML

All modern browsers have a build-in XML parser that can be used to

read and manipulate XML. The parser reads XML into memory and converts it

into an XML DOM object that can be accessed with JavaScript.

There are some differences between Microsoft's XML parser and the

parsers used in other browsers. The Microsoft parser supports loading of both

XML files and XML strings (text), while other browsers use separate parsers.

However, all parsers contain functions to traverse XML trees, access, insert,

and delete nodes (elements) and their attributes.

Loading XML with Microsoft's XML Parser

Microsoft's XML parser is built into Internet Explorer 5 and higher. The

following JavaScript fragment loads an XML document ("note.xml") into the

parser:

var xmlDoc=new ActiveXObject("Microsoft.XMLDOM");

 438

xmlDoc.async="false";

xmlDoc.load("note.xml");

The first line of the script above creates an empty Microsoft XML document

object. The second line turns off asynchronized loading, to make sure that the

parser will not continue execution of the script before the document is fully

loaded. The third line tells the parser to load an XML document called

"note.xml".

The following JavaScript fragment loads a string called txt into the parser:

var xmlDoc=new ActiveXObject("Microsoft.XMLDOM");

xmlDoc.async="false";

xmlDoc.loadXML(txt);

XML Parser in Firefox and Other Browsers

The following JavaScript fragment loads an XML document ("note.xml")

into the parser:

var xmlDoc=document.implementation.createDocument("","",null);

xmlDoc.async="false";

xmlDoc.load("note.xml");

The first line of the script above creates an empty XML document object.

The second line turns off asynchronized loading, to make sure that the parser

will not continue execution of the script before the document is fully loaded.

The third line tells the parser to load an XML document called "note.xml".

The following JavaScript fragment loads a string called txt into the parser:

var parser=new DOMParser();

var doc=parser.parseFromString(txt,"text/xml");

The first line of the script above creates an empty XML document object.

The second line tells the parser to load a string called txt.

19.4. XHTML

 439

XHTML is HTML "reformulated" to conform to the current Extensible

Markup Language (XML) standard, version 1.0. Imagine taking the best parts

from the HTML language and mixing them with all of the great aspects of

XML… then you’re coming close to imagining the power and flexibility of

XHTML.

XHTML has much stricter language syntax that HTML, however. To

create fully valid XHTML documents, they must adhere to these

rules/guidelines:

All tags must be closed

With normal HTML documents, some browsers will still render the

contents of a <table> even if you don’t close the table with a </table> tag. This

allows developers to become lazy and forgetful. The tags within an XHTML

document must always be nested correctly and closed properly.

If we have the following HTML 4.0 compliant table:

<table width="100%">

<tr>

<td>

<p>Welcome to my page

</td>

</tr>

</table>

<hr>

you can see straight away that the <p>, , and <hr> tags aren’t closed.

This is a big no-no for XHTML documents and will raise a parser error, because

all tags must be closed (yes, even the <p> tag).

The XHTML 1.0 compliant version of the table shown above looks like

this:

<table width="100%">

<tr>

<td>

<p>Welcome to my page</p>

 440

</td>

</tr>

</table>

<hr />

Notice how the <p>, , and <hr> tags are now closed? To close tags like

<hr>, we can simply add a space and forward-slash within the tag, like this: <hr

/>.

Attributes must contain quoted values

All tag attributes, such as <p align="center"> must be enclosed within

double quotes. You no longer have the choice of either single or double quotes.

Also, for attributes which have no value, or aren’t quoted such as

 <option checked>1</option>

you must assign a value to that attribute (even though it wont be used), and

surround it in double quotes, for example:

 <option checked="checked">1</option>

All element and attribute names must also be lower case.

Be careful with special characters

Because of the way XHTML documents are validated and must conform

to specific rules, HTML comments like this:

 <!-- This is a comment -->

as well as inline style sheets and inline JavaScript should always be removed

from your XHTML document. You should store them in separate .css and .js

files respectively, and reference them like this:

 <link rel="stylesheet" type="text/css" href="mystyle.css" />

for style sheets, or:

 <script language="JavaScript" src="mystuff.js"></script>

for JavaScript files.

If you're using other HTML characters such as <, > and & in attribute

values, for example, then they should be replaced with their corresponding

HTML entity representations such as "<", ">" and "&" respectively.

 441

Last but not least, with the exception of form input elements such as

<input>, <select>, you should use the "id" attribute instead of "name" when

attaching attributes to an element. In XHTML documents, the "name" attribute

is rendered useless (again, apart from form elements), and belongs back with

HTML 4.0.

Document Type Definition(DTD)

XHTML documents have three parts: the DOCTYPE (which contains the

DTD declaration), the head and the body. To create web pages that properly

conform to the XHTML 1.0 standard, each page must include a DTD

declaration; either strict, transitional, or frameset. Each of the three DTD’s is

described (with an example) below:

Strict

You should use the strict DTD when your XHTML pages will be marked

up cleanly, free of presentational clutter. You use the strict DTD together with

cascading style sheets, because it doesn’t allow attributes like "bgcolor" to be

set for the <body> tag, etc.

The strict DTD looks like this:

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Transitional

The transitional DTD should be used when you need to take advantage of

the presentational features that are available through HTML. You should also

use the transitional DTD when you want to support older browsers that don’t

have built-in support for cascading style sheets.

The transitional DTD looks like this:

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

 442

Frameset

You should use the frameset DTD when your XHTML page will contain

frames. The frameset DTD looks like this:

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

It should be fairly obvious which DTD declaration to include in your

XHTML file simply by just reading the features of each one. Now that we've got

all of the formal details of XHTML out of the way, let's look at some examples of

XHTML.

XHTML Benefits

XHTML documents are backward compatible with older, non-XHTML

compliant web browsers. Instead of sloppy HTML tags, your pages will now

contain XML tags that are always properly closed and nested correctly, such as:

 <p><u>This is some text

</u></p>

Instead of:

 <p><u>This is some text

</u>

You can see that the XHTML version of the code above has a <p>, ,

and then a <u> tag. These tags are closed in the reverse order that they were

created in: </u>, , and lastly </p>. All tags must be closed in this way for

the XHTML document to be considered valid.

Also, notice the
 tags? Because of the way non-XHTML browsers

are designed, as long as you leave a space between the beginning of the tag and

the “/>”, then they will just treat the tag normally, and ignore the forward-

slash.

XHTML is a standard

XHTML is an accepted standard (see http://www.w3.org/TR/xhtml1/),

meaning that all of the newer browsers due for release in the future (such as

newer version of IE, Netscape and Opera) will most definitely contain built-in

support for XHTML.

 443

The first document type in the XHTML family is XHTML 1.0. The W3C

standard for XHTML takes three of the previous document types from HTML 4.0

and converts them to fully utilize XML wherever possible. This promotes a

consistent, logical layout, while still keeping the actual content easy to follow.

XHTML documents must incorporate one of three document type

definitions (DTD’s). This makes sure that the XML data contained within an

XHTML document is valid and conforms to a certain layout/logical style as

defined in that DTD file.

You might be wondering what the benefits of migrating your current

HTML documents over to XHTML are; you may also be wondering why you

should bother learning more about XHTML; well, let me point out some of the

benefits of XHTML (as listed at http://www.w3.org/TR/xhtml1/):

• XHTML documents are XML conforming. As such, they are readily

reviewed, edited and validated with standard XML tools such as the

MSXML parser.

• XHTML documents can be written to operate as well or better that they

did before in existing HTML 4-conforming user agents as well as in new,

XHTML 1.0 conforming user agents.

• XHTML documents can utilize applications (e.g. scripts and applets) that

rely upon either the HTML Document Object Model or the XML

Document Object Model (DOM)

XHTML Examples

As you can probably guess by now, XHTML code looks very similar to

plain old HTML code, with just a couple of syntactic differences. Three examples

of valid XHTML documents are shown below. They were validated using the

W3C’s XHTML validation tool, located at http://validator.w3.org/.

Example 1:

This example used the strict DTD, meaning that every single tag must be closed

properly, all attributes assigned values, etc:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html

 444

PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"

lang="en">

<head>

<title> Strict DTD XHTML Example </title>

</head>

<body>

<p>

Please Choose a Day:

<select name="day">

<option selected="selected">Monday</option>

<option>Tuesday</option>

<option>Wednesday</option>

</select>

</p>

</body>

</html>

Example 2:

This example uses the transitional DTD, which provides support for older

browsers that don’t recognize style sheets. You can see it uses several attributes

within the <body> tag, which aren’t allowed when using the strict DTD:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"

lang="en">

 445

<head>

<title> Transitional DTD XHTML Example </title>

</head>

<body bgcolor="#FFFFFF" link="#000000" text="red">

<p>This is a transitional XHTML example</p>

</body>

</html>

Example 3:

This example uses the frameset DTD, which allows us to split one XHTML page

into multiple frames, with each frame containing an XHTML page within it:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"DTD/xhtml1-frameset.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"

lang="en">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-

1" />

<title> Frameset DTD XHTML Example </title>

</head>

<frameset cols="100,*">

<frame src="toc.html" />

<frame src="intro.html" name="content" />

</frameset>

</html>

19.5. Let Us Sum UP

XML was designed to transport and store data. HTML was designed to

display data.XML stands for EXtensible Markup Language. XML is a markup

 446

language much like HTML. XML was designed to carry data, not to display data.

XML tags are not predefined. You must define your own tags. XML is designed

to be self-descriptive. XML is a W3C Recommendation

Document Type definition (DTD)

The purpose of a DTD is to define the legal building blocks of an XML

document. It defines the document structure with a list of legal elements. A

DTD can be declared inline in your XML document, or as an external reference.

XML provides an application independent way of sharing data. With a DTD,

independent groups of people can agree to use a common DTD for

interchanging data. Your application can use a standard DTD to verify that data

that you receive from the outside world is valid. You can also use a DTD to

verify your own data.

XML documents (and HTML documents) are made up by the following

building blocks:

Elements, Tags, Attributes, Entities, PCDATA, and CDATA

Elements

Elements are the main building blocks of both XML and HTML

documents.

Tags

Tags are used to markup elements.

A starting tag like <element_name> mark up the beginning of an element,

and an ending tag like </element_name> mark up the end of an element.

Attributes

Attributes provide extra information about elements.Attributes are placed

inside the start tag of an element. Attributes come in name/value pairs.

PCDATA

PCDATA means parsed character data.

CDATA

CDATA also means character data.CDATA is text that will NOT be parsed

by a parser.

 447

Tags inside the text will NOT be treated as markup and entities will not

be expanded.

Entities

Entities as variables used to define common text. Entity references are

references to entities. Most of you will known the HTML entity reference:

" " that is used to insert an extra space in an HTML document. Entities

are expanded when a document is parsed by an XML parser.

Declaring an Element

In the DTD, XML elements are declared with an element declaration.

Empty elements

Empty elements are declared with the keyword EMPTY inside the

parentheses:

Elements with data

Elements with data are declared with the data type inside parentheses:

Elements with children (sequences)

Elements with one or more children are defined with the name of the

children elements inside the parentheses:

When children are declared in a sequence separated by commas, the

children must appear in the same sequence in the document. In a full

declaration, the children must also be declared, and the children can

also have children.

Wrapping

If the DTD is to be included in your XML source file, it should be

wrapped in a DOCTYPE definition.

DTD - Attributes

Declaring Attributes

In the DTD, XML element attributes are declared with an ATTLIST

declaration. An attribute declaration has the following syntax:

 448

DTD - Entities

Entities

Entities as variables used to define shortcuts to common text. Entity

references are references to entities. Entities can be declared internal.

Entities can be declared external .

XML Parser

Most browsers have a build-in XML parser to read and manipulate XML.

The parser converts XML into a JavaScript accessible object.

Parsing XML

All modern browsers have a build-in XML parser that can be used to

read and manipulate XML. The parser reads XML into memory and converts it

into an XML DOM object that can be accessed with JavaScript.

There are some differences between Microsoft's XML parser and the

parsers used in other browsers. The Microsoft parser supports loading of both

XML files and XML strings (text), while other browsers use separate parsers.

However, all parsers contain functions to traverse XML trees, access, insert,

and delete nodes (elements) and their attributes.

XHTML

XHTML is HTML "reformulated" to conform to the current Extensible

Markup Language (XML) standard, version 1.0. Imagine taking the best parts

from the HTML language and mixing them with all of the great aspects of

XML… then you’re coming close to imagining the power and flexibility of

XHTML.

XHTML has much stricter language syntax that HTML, however. To

create fully valid XHTML documents, they must adhere to these

rules/guidelines:

All tags must be closed

Attributes must contain quoted values

 449

Document Type Definition(DTD)

XHTML documents have three parts: the DOCTYPE (which contains the

DTD declaration), the head and the body. To create web pages that properly

conform to the XHTML 1.0 standard, each page must include a DTD

declaration; either strict, transitional, or frameset. Each of the three DTD’s is

described (with an example) below:

Strict

You should use the strict DTD when your XHTML pages will be marked

up cleanly, free of presentational clutter. You use the strict DTD together with

cascading style sheets, because it doesn’t allow attributes like "bgcolor" to be

set for the <body> tag, etc.

Transitional

The transitional DTD should be used when you need to take advantage of

the presentational features that are available through HTML. You should also

use the transitional DTD when you want to support older browsers that don’t

have built-in support for cascading style sheets.

Frameset

You should use the frameset DTD when your XHTML page will contain

frames. The frameset DTD looks like this:

XHTML Benefits

XHTML documents are backward compatible with older, non-XHTML

compliant web browsers. Instead of sloppy HTML tags, your pages will now

contain XML tags that are always properly closed and nested correctly, such as:

You can see that the XHTML version of the code above has a <p>, ,

and then a <u> tag. These tags are closed in the reverse order that they were

created in: </u>, , and lastly </p>. All tags must be closed in this way for

the XHTML document to be considered valid.

Also, notice the
 tags? Because of the way non-XHTML browsers

are designed, as long as you leave a space between the beginning of the tag and

the “/>”, then they will just treat the tag normally, and ignore the forward-

slash.

 450

XHTML is a standard

XHTML is an accepted standard (see http://www.w3.org/TR/xhtml1/),

meaning that all of the newer browsers due for release in the future (such as

newer version of IE, Netscape and Opera) will most definitely contain built-in

support for XHTML.

The first document type in the XHTML family is XHTML 1.0. The W3C

standard for XHTML takes three of the previous document types from HTML 4.0

and converts them to fully utilize XML wherever possible. This promotes a

consistent, logical layout, while still keeping the actual content easy to follow.

XHTML documents must incorporate one of three document type

definitions (DTD’s). This makes sure that the XML data contained within an

XHTML document is valid and conforms to a certain layout/logical style as

defined in that DTD file.

19.6. Lesson end Activities

 1. What is need for XML?

 2. What the elements of XML DTD?

 3. Compare HTML and XHTML.

19.7. Check your Progress

 1. Describe XML DTD.

 2. Write a XML program for you mark sheet where you pass or fail in a

subject.

 3. Explain about XHTML.

19.8. Reference

 1. Williamson, “The Complete reference XML”, Tata McGraw Hill, 2005

2. Thomas A.Powell, “ The Complete Reference HTML and XHTML”, 4th

Edition, Tata McGraw Hill

	205x270.pdf
	Page 1

	205x270.pdf
	Page 1

	205x270.pdf
	Page 1

	205x270.pdf
	Page 1

