
BCA

CORE - 5

SOFTWARE ENGINEERING

BHARATHIAR UNIVERSITY
SCHOOL OF DISTANCE EDUCATION

COIMBATORE

Subject Description: This subject deals with Software Engineering concepts

like Analysis, Design, Implementation, Testing and Maintenance.

Goal: Knowledge on how to do a software project with in-depth analysis.

Objective: To inculcate knowledge on Software engineering concepts in

turn gives a roadmap to design a new software project.

- - - - -

UNIT-I : Introduction to Software Engineering: Definitions – Size Factors –

Quality and Productivity Factors. Planning a Software Project: Planning

the Development Process – Planning an Organizational Structure.

UNIT-II: Software Cost Estimation: Software cost Factors – Software

Cost Estimation Techniques – Staffing-Level Estimation – Estimating Software

Estimation Costs.

UNIT-III: Software Requirements Definition: The Software Requirements

specification – Formal Specification Techniques. Software Design:

Fundamental Design Concepts – Modules and Modularization Criteria.

UNIT-IV: Design Notations – Design Techniques. Implementation Issues:

Structured Coding Techniques – Coding Style – Standards and Guidelines –

Documentation Guidelines.

UNIT-V: Verification and Validation Techniques: Quality Assurance –

Walkthroughs and Inspections – Unit Testing and Debugging – System

Testing. Software Maintenance: Enhancing Maintainability during

Development – Managerial Aspects of Software Maintenance –

Configuration Management.

TEXTBOOK:

1. SOFTWARE ENGINEERING CONCEPTS – Richard Fairley, 1997, TMH.

(UNIT-I: 1.1-1.3,2.3-2.4 UNIT-II: 3.1-3.4 UNIT III: 4.1-4.2,5.1-5.2

UNIT-IV: 5.3-5.4,6.1-6.4 UNIT-V: 8.1-8.2, 8.5-8.6, 9.1-9.3)

REFERENCE BOOKS:

1. Software Engineering for Internet Applications – Eve Anderson, Philip

Greenspun, Andrew Grumet, 2006, PHI.

2. Fundamentals of SOFTWARE ENGINEERING – Rajib Mall, 2nd edition,

PHI

3. SOFTWARE ENGINEERING – Stephen Schach, 7th edition ,TMH.

CORE - 5 SOFTWARE ENGINEERING

1. Introduction to Software Engineering 7

2. Software Project Planning 19

3. Software Cost Estimation 45

4. Requirement Specification 55

5. Software Design 65

6. Software Implementation 85

7. Software Quality Assurance 103

8. Software Testing 121

9. Software Maintenance 151

CONTENTS

 7

Lesson 1: Introduction to Software Engineering

Contents

1.0. Aims and Objectives

1.1. Introduction

1.2. Definition

1.3. Size Factors

1.4. Quality and Production Factors

1.5. Managerial Issues

1.6. Review Questions

1.7. Let us Sum up

1.8. Lesson end Activities

1.9. Points for Discussion

1.10. References

1.0. AIMS AND OBJECTIVES

• To understand the meaning of software engineering

• To understand the principles of Software Engineering

• To understand the quality and productivity factors of SE

• To understand the various managerial issues in SE

1.1. INTRODUCTION

Computers find applications in a wide variety of fields ranging from rail

ticket reservation systems to medical diagnosis systems. Hence it is necessary

for any computer to work on a wide spectrum of software.

Software is not merely a collection of computer programs. There is a thin

difference between software and program. A program consists of a set of

instructions that a computer follows to perform a task and is complete in it. It

is generally used only by the author of the program and has little or no

documentation. It is difficult for others to use the program, modify it, or debug

it. An example may be a program in C language to arrange a list of names in

ascending order.

On the other hand, software is a collection of programs and is developed

for widespread use. Hence it is expected to be very user friendly. It contains

comprehensive documentation, which enables it to be used by people other

than the developers also. The documentation also enables customization, i.e.,

modification of the software to suit specific applications by third party

programmers.

 8

In the initial stages of software development, the software was

unmanaged and little attention was paid to systematic methods for its creation,

until delays and costs began to go up. This necessitated the need for a

structured approach to programming, laying the way for software development

within a planned framework.

Software creation has accelerated in the recent past as evidenced by the

boom in software employment. Software has been created to automate most

aspects of every day life. But the software development has been to large extent

independent, raising questions of compatibility, quality, reusability, and

maintainability. Schedule and cost increases, poorly defined customer

requirements, poor quality of software, little or sometimes no documentation for

the software developed are some of the few problems that led to a software

crisis (disaster). These problems have grown exponentially making it almost

impossible to manage the large volume of software available. These problems

have led to a new branch of study concerned with the development of formal

methods to address these problems, called Software Engineering.

1.2. DEFINITIONS

The IEEE glossary on software engineering terminology gives the

following definition for software:

Software Engineering is the application of a systematic,

disciplined, quantifiable approach to the development,

operation and maintenance of software, that is, the application

of engineering to software.

A systematic approach to the analysis, design, implementation and

maintenance of software. It often involves the use of CASE tools. There are

various models of the software life cycle and many methodologies for the

different phases.

It will be clear that the term software engineering involves many

difference issues - all are important to the success of large-scale software

development. Many authors define Software Engineering as:

Boehm [Boehm 1979]:

Software Engineering: The practical application of scientific knowledge in

the design and construction of computer programs and the associated

documentation required to develop, operate, and maintain them.

Dennis [Dennis 1975]:

Software engineering is the application of principles, skills, and art to the

design and construction of programs and systems of programs.

Parnas [Parnas 1974]:

 9

Software engineering is programming under at last one of the following

two conditions:

(1) More than one person is involved in the construction and/or use of

the programs

(2) More than one version of the program will be produced

Fairley [Fairley 1985]:

Software engineering is the technological and managerial discipline

concerned with the systematic production and maintenance of software

products that are developed and modified on time and within cost

estimates.

Sommerville [Sommerville 1989]:

Software Engineering is concerned with building software systems which

are large than would normally be tackled by a single individual, uses

engineering principles in the development of these systems and is made

up of both technical and non-technical aspects.

Pomberger and Blaschek [Pomberger 1996]:

Software engineering is the practical application of scientific knowledge

for the economical production and use of high-quality software.

1.2.1. Principle of Software Engineering

The basic principle of software Engineering is to use structured, formal and

disciplined methods for building and using systems, just as in any other branch

of engineering. Software Engineering is an attempt at providing the same, a set

of methods, a variety of tools, and a collection of procedures.

� Methods provide the rules and steps for carrying out tasks. The tasks

are project-planning and estimation, system and software requirements

analysis, design of processes and data structures, algorithm and

program architecture, coding, testing and maintenance.

� Tools provide automated or semi-automated support for methods. Tools

which automate the range of Software Engineering methods can be

integrated into one system called CASE (Computer Aided Software

Engineering) tools. CASE tools are available to support and automate

most of the software engineering methods.

� Standard procedures bind the methods and tools into a framework.

They define the sequence in which methods will be applied and the

deliverables (documents, forms, reports, etc.) that are required. These

specify the controls that ensure quality, coordinate change, and the

milestones that help a manager assess progress.

 10

Software Engineering provides certain models that encompass the above

methods, tools and procedures. The paradigm (theories and methodology) may

be viewed as models of software development.

Check your progress

I State whether true of false:

1. There is no difference between software engineering and programming.

2. Software engineering differs from classical engineering disciplines to

some extent.

II Choose the correct answer.

The concept of software engineering was born because:

a) People felt the need for more programmers.

b) Most software projects were over budget and behind schedule

c) Most development time was spent on rework.

d) B and C

1.3. SIZE FACTORS

 Size-oriented software metrics are derived by normalizing quality and/or

productivity measures by considering the “size” of the software that has been

produced.

Examples:

• Direct measures - Errors per KLOC, Defects per KLOC, Cost per KLOC,

pages of documentation per KLOC.

• Indirect measures – Errors/person-month, LOC per person-month,

Cost/page of documentation

Advantages:

These measures are easy to use.

Disadvantage:

LOC is not universally accepted as a key measure because it is language

dependant and programmer dependant.

1.4. QUALITY AND PRODUCTIVITY FACTORS

 The overriding goal of software engineering is to produce a high quality

system, application, or product. To achieve this goal, software engineers must

do the following:

 11

1. Apply effective methods coupled with modern tools within the context of a

mature software process.

2. Measure in order to assess the quality of the process as well the product.

Measuring Quality

 Although there are many measures of software quality, correctness,

maintainability, integrity, and usability provide useful indicators for the project

team.

a. Correctness: Correctness is the degree to which the software performs

its required function. Defects per KLOC, where a defect is defined as a

verified lack of conformance to requirements.

b. Maintainability: Maintainability is the ease with which a program can

be corrected if an error is encountered, adapted if its environment

changes, or enhanced if the customer desires a change in requirements.

There is no direct measure for software maintenance. Hence indirect

measures have to be used. A simple time-oriented metric known as a

Mean-Time-To-Change (MTTC) is the time it takes to analyze a change

request, design an appropriate modification, implement the change, test

it, and distribute the change to all the users.

c. Integrity: Integrity measures a system’s ability to withstand attacks on

its security. Attacks can be made on programs, data, and documents. To

measure integrity, two additional attributes must be defined: threat and

security. Threat is the probability that an attack of a specific type will

occur within a given time. Security is the probability that the attack of a

specific type will be repelled. The integrity of a system can be defined as:

 Integrity = ∑ [1 – threat x (1 – security)]

d. Usability: Usability is an attempt to quantify “user friendliness” and can

be measured in terms of four characteristics: (1) the physical and/or

intellectual skill required to learn the system; (2) the time required to

become moderately efficient in the use of the system; (3) the net increase

in productivity measured when the system is used by someone who is

moderately efficient, and (4) a subjective assessment of users attitude

towards the system.

Defect Removal Efficiency (DRE)

 A quality metric that provides benefit at both the project and process

level is Defect Removal Efficiency (DRE). DRE is a measure of the filtering

ability of quality assurance and control activities as they are applied throughout

all process framework activities.

DRE = E / (E + D)

Where E = number of errors found before delivery of the software to the end

user,

 12

 D = number of defects found after delivery

 The ideal value for DRE is 1. That is, no defects are found in the software.

Realistically, D will be greater than zero, but the value of DRE can still

approach 1 as E increases. In fact, as E increases, it is likely that the final

value of D will decrease. On the whole, DRE encourages a software project team

to institute techniques for finding as many errors as possible before delivery.

DRE can also be used within the project to assess a team’s ability to find errors

before they are passed to the next software engineering task. This is because

errors that are not found during a phase (e.g. Requirements Analysis) are

passed onto the subsequent stage (e.g. Design). When used in this context, DRE

can be redefined as:

DREi = Ei / (Ei + Ei + 1)

where,

Ei = number of errors found during software engineering activity i

Ei+1 = number of errors found during software engineering activity i + 1

that are traceable to errors that were not discovered in software

engineering activity i.

A quality objective for a software team (or an individual software engineer) is to

achieve DREi that approaches 1. That is, errors should be filtered out before

they are passed on to the next activity.

Measurement of software quality factors

Software Quality Factors cannot be measured because of their unclear

description. It is necessary to find measures, or metrics, which can be used to

quantify them as non-functional requirements

For example, reliability is a software quality factor, but cannot be

evaluated in its own right. However there are related attributes to reliability,

which can indeed be measured. Such attributes are mean time to failure, rate of

failure occurrence, availability of the system. Similarly, an attribute of

portability is the number of target dependent statements in a program.

A scheme which could be used for evaluating software quality factors is

given below. For every characteristic, there are a set of questions which are

relevant to that characteristic. Some type of scoring formula could be developed

based on the answers to these questions, from which a measure of the

characteristic may be obtained.

• Understandibility: Are variable names descriptive of the physical or

functional property represented? Do uniquely recognisable functions

contain adequate comments so that their purpose is clear? Are

deviations from forward logical flow adequately commented? Are all

elements of an array functionally related?

 13

• Completeness: Does the program contain all referenced subprograms

not available in the usual systems library? Are all parameters required

by the program available? Are all inputs required by the program

available?

• Conciseness (short): Is all code reachable? Is any code redundant? How

many statements within loops could be placed outside the loop, thus

reducing computation time? Are branch decisions too complex?

• Portability (capable of being transferred): Does the program depend

upon system or library routines unique to a particular installation? Have

machine-dependent statements been flagged and commented? Has

dependency on internal bit representation of alphanumeric or special

characters been avoided?

• Consistency (stability): Is one variable name used to represent difficult

physical entities in the program? Does the program contain only one

representation for physical or mathematical constants? Are functionally

similar arithmetic expressions similarly constructed? Is a consistent

scheme for indentation used?

• Maintainability: Has some memory capacity been reserved for future

expansion? Is the design cohesive, i.e., each module has recognizable

functionality? Does the software allow for a change in data structures

(object-oriented designs are more likely to allow for this)? If a

functionally-based design (rather than object-oriented), is a change likely

to require restructuring the main-program, or just a module?

• Testability: Are complex structures employed in the code? Does the

detailed design contain clear pseudo-code? Is the pseudo-code at a

higher level of abstraction than the code? If tasking is used in concurrent

designs, are schemes available for providing adequate test cases?

• Usability: Is a GUI used? Is there adequate on-line help? Is a user

manual provided? Are meaningful error messages provided?

• Reliability: Are loop indexes range tested? Is input data checked for

range errors? Is divide-by-zero avoided? Is exception handling provided?

• Structuredness: Is a block-structured programming language used? Are

modules limited in size? Have the rules for transfer of control between

modules been established and followed?

• Efficiency: Have functions been optimized for speed? Have repeatedly

used blocks of code been formed into sub-routines?

1.5. MANAGERIAL ISSUES

Software engineering is an application of management activities such as:

• Planning,

 14

• Coordinating,

• Ensuring,

• Monitoring,

• Controlling and

• Reporting

to insure that the development of software is systematic, disciplined and

measured.

Software Engineering Measurement

1. Goals

1. Organizational objectives

2. Software process improvement goals

2. Measurement selection

1. Goal-driven measurement selection

2. Measurement validity

3. Measuring software and its development

1. Size measurement

2. Structure measurement

3. Resource measurement

4. Quality measurement

4. Collection of data

1. Survey techniques and form design

2. Automated and manual data collection

5. Software measurement models

1. Model building, calibration and evaluation

2. Implementation, interpretation and refinement of models

Software Project Management

• Communication:

• Rationale management:

o The problem

o the alternatives considered

o the criteria used to evaluate the alternatives

 15

o the debate

o the decision

• Testing: find differences between the system and its models by executing

the system with sample input data sets.

o Unit testing: object design compared with object and subsystem.

o Integration testing: combinations of subsystems are integrated

and compared with the system design model.

o System testing: typical and exceptional cases are compared with

the requirements model

o Acceptance testing

• Software configuration management: establishes baseline, monitors and

controls changes in work products, versions.

• Project management: oversight activities that insure the delivery of a

high-quality system on time and within budget including

o planning and budgeting

o hiring and organizing developers into teams

o monitoring project status

o intervening when deviation occur

• Software life cycle modeling activities

Since quantitative methods have proved so powerful in the other sciences,

computer science practitioners and theoreticians have worked hard to bring

similar approaches to software development

Software metrics are numerical data related to software development.

Metrics strongly support software project management activities. They relate to

the four functions of management as follows:

1. Planning - Metrics serve as a basis of cost estimating, training planning,

and resource planning, scheduling, and budgeting.

2. Organizing - Size and schedule metrics influence a project's

organization.

3. Controlling - Metrics are used to status and track software development

activities for compliance to plans.

4. Improving - Metrics are used as a tool for process improvement and to

identify where improvement efforts should be concentrated and measure

the effects of process improvement efforts.

A metric quantifies a characteristic of a process or product. Metrics can be

directly observable quantities or can be derived from one or more directly

 16

observable quantities. Examples of raw metrics include the number of source

lines of code, number of documentation pages, number of staff-hours, number

of tests, number of requirements, etc. Examples of derived metrics include

source lines of code per staff-hour, defects per thousand lines of code, or a cost

performance index.

1.6. REVIEW QUESTIONS

1. What are the different software paradigms available? Can we combine the

paradigms? Explain.

2. What are the objectives of Software Engineering?

3. Explain the evolving role of software.

4. Give a generic view of Software Engineering.

5. What is software re-engineering? Explain it.

6. Explain Software crises and software myths.

7. What is software reuse? Explain.

8. Define Software Engineering. List out is components.

9. Discuss the fundamental activities, which are common to all software

processes.

1.7. LET US SUM UP

This Lesson covered the following:

• The early unplanned approaches to software development and how their

inadequacy in face of increased sophisticated led to the software crises

• The realization of the need for a more structured and organized way of

building software, leading to the birth of Software Engineering.

• Definition of Software Engineering

• Software Engineering methods, tools and procedures

1.8. LESSON END ACTIVITIES

i. Interview programmer and managers in the organization of your choice to

determine management problem areas.

ii. How do the perceptions of managers and programmers differ?

1.9. POINTS FOR DISCUSSION

i. Which is more important the product or process? Justify your answer

 17

ii. Identify the umbrella activities in software engineering process.

1.10. REFERENCES

1. Richard Fairley, “Software Engineering Concepts”, Tata McGraw-Hill, 1997.

2. Roger S.Pressman, Software engineering- A practitioner’s Approach,

McGraw-Hill International Edition, 5th edition, 2001.

 18

 19

LESSON 2 : SOFTWARE PROJECT PLANNING

Contents

2.0. Aims and Objectives

2.1. Introduction

2.2. Planning a Software Project

2.3. Defining the problem

2.4. Developing a Solution Strategy

2.5. Planning the Development Process

2.6. Planning an Organization structure

2.7. Other Planning Activities

2.8. Review Questions

2.9. Let us Sum up

2.10. Lesson End Activities

2.11. Points for Discussion

2.12. References

2.0. AIMS AND OBJECTIVES

• To provide a broad outlook of the steps involved in a software project

planning

• To understand and define software Engineering Models

• To understand the project planning activities, scope and resources.

2.1. INTRODUCTION

The dictionary definition of Project is: a planned undertaking to present

results at a specified time. Note: there the word undertaking means: a. Making

a new product, or b. changing the old product.

The software project management process begins with a set of activities that

are collectively called project planning (see Figure 2.1.). The first of these

activities is estimation. Estimation of resources, cost, and schedule for a

software development effort requires experience, access to good historical

information, and the courage to commit to quantitative measures when only

qualitative data exists. Estimation carries inherent risk and risk leads to

uncertainty. Hence software project estimation must be viewed as an art and

science and must be done as accurately as possible.

 20

2.2. PLANNING A SOFTWARE PROJECT

The objective of software project planning is to provide a framework that

enables the manager to make reasonable estimates of resources, cost, and

schedule. These estimates are made within a limited time frame at the

beginning of a software project. Also they should be updated regularly as the

project progresses. The planning objective is achieved through a process of

information discovery that leads to reasonable estimates.

2.2.1. Software Scope

The first activity in software project planning is the determination of

software scope. Software scope describes function, performance, constraints,

interfaces, and reliability. Functions are evaluated and in some cases refined to

provide more detail prior to the beginning of estimation. Both cost and schedule

estimates are functionally oriented and hence some degree of decomposition is

Fig. 2.1. Steps in Software Project Plan

 21

often useful. Performance considerations encompass processing and response

time requirements. Constraints identify limits placed on the software by

external hardware, available memory, or other existing systems.

To define scope, it is necessary to obtain the relevant information and

hence get the communication process started between the customer and the

developer. To accomplish this, a preliminary meeting or interview is to be

conducted. The analyst may start by asking context free questions. That is, a

set of questions that will lead to a basic understanding of the problem, the

people who want a solution, the nature of the solution that is desired, and the

effectiveness of the first encounter itself.

The next set of questions enable the analyst to gain a better

understanding of the problem and the customer to voice his or her perceptions

about a solution. The final set of questions, known as Meta questions, focus on

the effectiveness of the meeting.

A team-oriented approach, such as the Facilitated Application Specification

Techniques (FAST), helps to establish the scope of a project.

2.2.2. Resources

 The development resources needed are:

1. Development Environment (Hardware/Software Tools)

2. Reusable Software Components

3. Human Resources (People)

Each resource is specified with four characteristics – description of the

resource, a statement of availability, chronological time that the resource will be

required, and duration of time that the resource will be applied. The last two

characteristics can be viewed as a time window. Availability of the resource for

a specified window must be established at the earliest practical time.

Human Resources: Both organizational positions (e.g. Manager, senior

software engineer, etc.) and specialty (e.g. Telecommunications, database, etc.)

are specified. The number of people required varies for every software project

and it can be determined only after an estimate of development effort is made.

Reusable Software Resources: These are the software building blocks that can

reduce development costs and speed up the product delivery. The four software

resource categories that should be considered as planning proceeds are:

1. Off-the-shelf components – Existing software that can be acquired from a

third-party or that has been developed internally for past project. These are

ready for use and have been fully validated. Generally, the cost for

acquisition and integration of such components will be less than the cost to

develop equivalent software.

 22

2. Full-experience components – Existing specifications, designs, code, or

test data developed for past projects that are similar to the current project.

Members of the current software team have had full experience in the

application area represented by these components. Therefore modifications

will be relatively low risk.

3. Partial-experience components - Existing specifications, designs, code, or

test data developed for past projects that are related to the current project,

but will require substantial modification. Members of the current software

team have only limited experience in the application area represented by

these components. Therefore modifications will have a fair degree of low risk

and hence their use for the current project must be analyzed in detail.

4. New components – Software components that must be built by the

software team specifically for the needs of the current project.

Environmental Resources: The environment that supports the software

project, often called Software Engineering Environment (SEE), incorporates

hardware and software. Hardware provides a platform that supports the tools

required to produce the work products. A project planner must prescribe the

time window required for hardware and software and verify that these resources

will be available.

The phases of a software project

Software projects are divided into individual phases. These phases

collectively and their chronological sequence are termed the software life cycle

(see Fig. 2.2).

Software life cycle: a time span in which a software product is developed and

used, extending to its retirement.

The cyclical nature of the model expresses the fact that the phases can be

carried out repeatedly in the development of a software product.

Operation and

maintenance

System test

System

specification

Requirements

analysis

System and

component

design

Implementation

and component

test

Problem

Figure 2.2. The classical sequential software life-cycle

model

 23

Requirements analysis and planning phase

Goal:

� Determining and documenting:

� Which steps need to be carried out,

� The nature of their mutual effects,

� Which parts are to be automated, and

� Which recourses are available for the realization of the project.

Important activities:

� Completing the requirements analysis,

� Delimiting the problem domain,

� Roughly sketching the components of the target system,

� Making an initial estimate of the scope and the economic feasibility of the

planned project, and

� Creating a rough project schedule.

Products:

� User requirements,

� Project contract, and

� Rough project schedule.

System specification phase

Goal:

� a contract between the client and the software producer (precisely

specifies what the target software system must do and the premises for its

realization.)

Important activities:

� Specifying the system,

� Compiling the requirements definition,

� Establishing an exact project schedule,

� Validating the system specification, and

� Justifying the economic feasibility of the project.

 24

Products:

� Requirements definition, and

� Exact project schedule.

System and components design

Goal:

� Determining which system components will cover which requirements in

the system specification, and

� How these system components will work together.

Important activities:

� Designing system architecture,

� Designing the underlying logical data model,

� Designing the algorithmic structure of the system components, and

� Validating the system architecture and the algorithms to realize the

individual system components.

Products:

� Description of the logical data model,

� Description of the system architecture,

� Description of the algorithmic structure of the system components, and

� Documentation of the design decisions.

Implementation and component test

Goal:

� Transforming the products of the design phase into a form that is

executable on a computer.

Important activities:

� Refining the algorithms for the individual components,

� Transferring the algorithms into a programming language (coding),

� Translating the logical data model into a physical one,

� Compiling and checking the syntactical correctness of the algorithm, and

� Testing, and syntactically and semantically correcting erroneous system

components.

 25

Products:

� Program code of the system components,

� Logs of the component tests, and

� Physical data model.

System test

Goal:

� Testing the mutual effects of system components under conditions close to

reality,

� Detecting as many errors as possible in the software system, and

� Assuring that the system implementation fulfills the system specification.

Operation and maintenance

Task of software maintenance:

� Correcting errors that are detected during actual operation, and

� Carrying out system modifications and extensions.

This is normally the longest phase of the software life cycle.

Two important additional aspects:

� Documentation, and

� Quality assurance.

During the development phases the documentation should enable

communication among the persons involved in the development; upon

completion of the development phases it supports the utilization and

maintenance of the software product.

Quality assurance encompasses analytical, design and organizational

measures for quality planning and for fulfilling quality criteria such as

correctness, reliability, user friendliness, maintainability, efficiency and

portability.

2.3. DEFINING THE PROBLEM

Most software projects are undertaken to provide solution to business

needs. In the beginning of a software project the business needs are often

expressed informally as part of a meeting or a casual conversation. In a more

formal approach, a customer could send Request For Information (RFI) to

organizations to know their area of expertise and domain specifications. The

customer puts up a Request For Proposal (RFP) stating the business needs.

Organizations will to provide their services will send proposals and one of the

proposals is accepted by the customer.

 26

2.4. DEVELOPING A SOLUTION STRATEGY

The business needs have to be understood and the role of software in

providing the solution has to be identified. Software development requires a

model to be used to drive it and tract it to completion. The model will provide

an effective roadmap for the software team.

2.5. PLANNING THE DEVELOPMENT PROCESS

Planning the software development process involves several important

considerations. The first consideration is to define a product life-cycle model. A

software project goes through various phases before it is ready to be used for

practical purposes. For every project, a framework must be used to define the

flow of activities such as define, develop, test, deliver, operate, and maintain a

software product. There are many well define models that can be use. There

could be variations to these models also, depending on the deliverables and

milestones for the project. A model has to be selected and finalized to start a

project.

The following section discusses the various models such as:

a. Waterfall Model

b. Prototype Model

c. Spiral Model

d. Object-oriented life-cycle model

2.5.1. The Waterfall Model

Developed in the 1970s [Royce 1970].

The Waterfall model is one of the oldest models available for software

development and also most widely used. It is also called the Classic Life Cycle

Model. It suggests a systematic and sequential approach to software

development. The different phases are System Engineering, Requirement

Analysis, Design, Coding, Testing and Deployment

Figure 2.3., describes the various stages of the waterfall model. The sequential

move from one phase to the next (as illustrated in figure) gave rise to the name

Waterfall model. The model mandates that each phase will be executed after the

completion of the previous phase. In the figure, the forward arrow describes the

flow between phases and backward arrows (unlike water fall) describe the

feedback mechanism that should exist between phases to provide information

for future development. Each of these phases will now be discussed in detail.

 27

Feasibility or

Conception

Defining a preferred concept for the software product,

and determining its life-cycle feasibility and superiority

to alternative concepts. This phase makes clears certain

issues such as:

� The problem perceived

� The goals to be achieved by the solution

� The benefits from the solution

� The scope of the project.

Requirements or

Initiation

In this phase, the software engineers work with users to

carry out a macro level study of the user’s requirements.

The software engineers define the various alternatives

possible and the cost-benefit justification of these

alternatives.

Product Design

or Analysis

In this phase, the software engineers carry out a detailed

study of the user’s requirements. They then arrive at the

proposed system to be built. The model of this system is

used to freeze all requirements before the next phase

begins. This phase generates the functional

Fig. 2.3. Waterfall Model

 28

specifications, which contain:

� Outputs to be produced

� Inputs that need to be received

� Procedures that will get the output from the input

� Audit and control requirements that the user can

carry out to ensure that the system is acceptable.

Detailed Design: In this phase, the functional specifications are used for

translating the model into a design of the desired

system. The purpose of the design phase is to specify a

particular software system that will meet the stated

requirements. The design specifications that get

generated at the end of this phase are technical in

nature and typically contain:

� User interfaces

� Databases and data structures

� Algorithms and program structures

� Equipment, personnel and other facilities required

� Manual procedures that will be part of the

implemented system

Coding or

Construction

This phase produces the actual code that will be

delivered to the customer as the running system.

Individual modules developed in this phase are tested

before being delivered to the next phase.

Integration or

Testing

All the modules that have been developed before are

integrated or put together in this phase, and tested as a

complete system.

Implementation: Once the system has passed all the tests, it is delivered

to the customer.

Maintenance: Modifications made after delivery are a part of this

phase.

Phase out: A clean transition of the functions performed by the

product to its successors.

The waterfall model is ideal in situations where the requirements are well

defined from the beginning. And undergo only minor changes. However, the

 29

requirements for a large number of applications are less stable and not perfectly

known at the very beginning. Even in cases where the initial requirements are

clear, changes are still likely to occur. For example, changes in technology can

cause changes in the initial requirements. This is particularly turn of interactive

end user applications. Most software systems of this kind are dynamic – they

are required to change over time as they acquire more users. To constrain the

development of this kind of software in a rigid process, such as the Waterfall

model, can prove counter-productive. Due to these deficiencies in the Waterfall

model, an alternative – The Evolutionary model – was developed.

2.5.2. The prototyping-oriented life-cycle model

Developed in the 1990s [Pomberger 1991].

This model is an example of an iterative approach to software

development, which is useful when either the customer or the developer is

unsure of the exact requirements of the software. The developer creates a

model of the system to be built.

This model may be one of the following types:

a) Throwaway model: Discard the model once all requirements are

understood

b) Evolving model: Refine the model every time when the requirements

are clearer

Irrespective of whether it’s a Throwaway or Evolving model prototyping

starts with the communication phase as described in Figure 2.4. The software

engineer and the customer together define the overall objective for the software,

identify the requirements that are known and outline area for further definition.

The iteration is planned quickly and modeled in quick design. The design

focuses only in the aspects which are visible to the user. The quick design

leads to the construction of a prototype. The prototype is evaluated by the

customer. The feedback is taken and used to refine the requirements for the

software. The iterations continue, each time refining the software. Prototype

Model is extremely useful for doing proof of concepts. The rapid development

process can test out new concepts at minimal cost.

 30

Advantages

� Changes can be made easily – An appreciable number of the changes in

requirement trigger modifications only in the prototype. Modifying a

prototype description is significantly simpler than modifying production

code.

� Costs are reduced – Modifying the prototype is much faster and cheaper

than modifying the production code.

� User’s requirements become clearer to the developer – Usually, the user’s

requirements are unclear, and the developer is uncertain about what the

user meant. Prototyping is the best solution in such cases. The developer

can build a prototype and demonstrate to the user his or her

understanding of the user’s requirements. The user can then verify if the

prototype represents his or her requirement.

� User involvement is higher – The user is involved in the development of

the system from the very beginning. The user gets a feel of what the real

system will look like and suggests changes that he or she desires.

Disadvantages

Disadvantage is that it may lead to indiscipline of development (which

the classic life cycle model tries to overcome). For example, if some new

requirements are received while in the construction phase, the engineer may

drop construction and go back to planning or communication with customer.

At some point of time the customer requirements has to be frozen in

Fig. 2.4: Prototype Oriented-Life cycle Model

Development or

Feedback

Prototype

Model

Modeling Quick

design

Quick Plan

Communication

Construction of

Prototype

 31

conformance with the customer or else it becomes on unending processing,

consuming project’s time and resources.

When to Use Prototyping: Prototyping is fast becoming popular. It is best

suited in situations where:

� The user is unable to articulate his or her requirements.

� The user is unwilling or unable to look at abstract models of the system,

for example, data flow diagrams.

� The biggest problem area is the user interface. For example, report

formats and input screens. The developer can confirm the type of reports

that screens that the user wants. User interfaces are the most important

aspect of end user applications.

� Good tools are available for prototyping. Tools like screen painters and

fourth generation language aid the process of prototyping.

Check your Progress 1

State whether true of false:

a) The prototype is always required to be a small version of the entire

system.

b) The difference between the early approach to prototyping and the new

approach (Evolutionary model) is that in the latter the prototype is not

discarded. It is modified and enlarged to eventually become the real

system

 32

2.5.3. The Spiral model

Developed in 1988 [Boehm 1988].

The spiral model is a software development model that combines the

above models or includes them as special cases. The model makes it possible to

choose the most suitable approach for a given project. Each cycle encompasses

the same sequence of steps for each part of the target product and for each

stage of completion. It is an evolutionary software process model (see Fig. 2.5).

The model has a series of evolutionary releases of the software as it is being

developed. Every iterative release might be a prototype. The later releases are

more complete versions of the software to be produced.

The development strategy behind the Spiral model has been stated as:

• Deliver something to the user.

• Measures the added value to the user in all critical dimensions.

• Adjust both the design and objectives based on observed realities.

The next step evaluates the proposed solution variant with respect to the

project goals and applicable constraints, emphasizing the detection of risks and

uncertainties. If such are found, measures and strategies are considered to

reduce these risks and their effects.

 33

� Important aspects of the spiral model: Each cycle has its own

validation step that includes all persons participating in the project and

the affected future users or organizational unit,

� Validation encompasses all products emanating from the cycle, including

the planning for the next cycle and the required resources

Spiral model contains six task regions:

� Customer communication: tasks required to establish effective
communication between developer and customer.

� Planning-tasks required defining resources, timelines, and other project
–related information.

� Risk analysis – tasks required to assess both technical and management
risks.

� Engineering – tasks required to build one or more representations of the
application.

� Construction and release – tasks required to construct, test, install,
and provide user support (e.g., documentation and training).

� Customer evaluation – tasks required to obtain customer feedback
based on evolution of the software representations created during the
engineering.

Advantages and Disadvantages

The spiral model thus encompasses the earlier models and also introduces the

element of risk analysis. It is more realistic because real-world engineering

requires considerable iteration. The disadvantage of the spiral model is that it

requires considerable expertise in terms of risk assessment and project

management.

Check your progress

i. Compare waterfall model and spiral model of software development. Give

the advantages and disadvantages of each.

ii. Compare evolutionary prototyping and throw away prototyping.

 34

2.5.4.. The object-oriented life-cycle model

• The usual division of a software project into phases remains intact with
the use of object-oriented techniques.

• The requirements analysis stage strives to achieve an understanding of
the client’s application domain.

• The tasks that a software solution must address emerge in the course of

requirements analysis.

• The requirements analysis phase remains completely independent of an

implementation technique that might be applied later.

• In the system specification phase the requirements definition describes

what the software product must do, but not how this goal is to be

achieved.

• One point of divergence from conventional phase models arises because

implementation with object-oriented programming is marked by the

assembly of already existing components.

The advantages of object-oriented life-cycle model:

• Design no longer is carried out independently of the later

implementation because during the design phase we must consider

which components are available for the solution of the problem.

Design and implementation become more closely associated, and even

the choice of a different programming language can lead to completely

different program structures.

• The duration of the implementation phase is reduced. In particular,

(sub) products become available much earlier to allow testing of the

correctness of the design. Incorrect decisions can be recognized and

corrected earlier. This makes for closer feedback coupling of the

design and implementation phases.

• The class library containing the reusable components must be

continuously maintained. Saving at the implementation end is

partially lost as they are reinvested in this maintenance. A new job

title emerges, the class librarian, who is responsible for ensuring the

efficient usability of the class library.

 35

• During the test phase, the function of not only the new product but

also of the reused components is tested. Any deficiencies in the latter

must be documented exactly. The resulting modifications must be

handled centrally in the class library to ensure that they impact on

other projects, both current and future.

• Newly created classes must be tested for their general usability. If

there is a chance that a component could be used in other projects as

well, it must be included in the class library and documented

accordingly. This also means that the new class must be announced

and made accessible to other programmers who might profit from it.

This places new requirements on the in-house communication

structures.

The class library serves as a tool that extends beyond the scope of an individual

project because classes provided by one project can increase productivity in

subsequent projects.

The actual software life cycle recurs when new requirements arise in the

company that initiates a new requirements analysis stage.

The object and prototyping-oriented life-cycle model

The specification phase steadily creates new prototypes. Each time we

are confronted with the problem of having to modify or enhance existing

prototypes. If the prototypes were already implemented with object-oriented

technology, then modifications and extensions are particularly easy to carry out.

This allows an abbreviation of the specification phase, which is particularly

important when proposed solutions are repeatedly discussed with the client.

With such an approach it is not important whether the prototype serves solely

for specification purposes or whether it is to be incrementally developed to the

final product. If no prototyping tools are available, object-oriented programming

can serve as a substitute tool for modeling user interfaces. This particularly

applies if an extensive class library is available for user interface elements.

Implementatio

Documentation

Class

Introduction Us
e

Planni
ng

Design Implementation Operation/maintena

System

Requirements
analysis

Test

Fig. 2.6: Object Oriented-Life cycle Model

 36

For incremental prototyping (i.e. if the product prototype is to be used as the

basis for the implementation of the product), object-oriented programming also

proves to be a suitable medium. Desired functionality can be added stepwise to

the prototypes without having to change the prototype itself. These results in a

clear distinction between the user interfaces modeled in the specification phase

and the actual functionality of the program. This is particularly important for

the following reasons:

• This assures that the user interface is not changed during the

implementation of the program functionality. The user interface developed

in collaboration with the client remains as it was defined in the

specification phase.

• In the implementation of the functionality, each time a subtask is

completed, a more functional prototype results, which can be tested

(preferably together with the client) and compared with the specifications?

During test runs situations sometimes arise that require rethinking the

user interface. In such cases the software life cycle retreats one step and

a new user interface prototype is constructed.

Since the user interface and the functional parts of the program are largely

decoupled, two cycles result that shares a common core. The integration of the

functional classes and the user interface classes creates a prototype that can be

tested and validated. This places new requirements on the user interface

and/or the functionality, so that the cycle begins.

Types of project planning:

Plan Type Description

User interface design

Prototyping

Design of functional
parts

User interface design

Integration

Test and validation

Prototype

Product

User interface classes Product Function-oriented classes

Requirements

Fig. 2.7: Software development with prototyping and object-orientation

 37

Quality plan Describes the quality procedures and standards that will

be used in a project.

Validation plan Describes the approach, resources and schedule used for

system validation.

Configuration

management

plan

Describes the configuration management procedures and

structures to be used.

Maintenance

plan

Predicts the maintenance requirements of the system,

maintenance costs and effort required.

Staff

development

plan

Describes how the skills and experience of the project

team members will be developed. See

2.6. PLANNING AN ORGANIZATION STRUCTURE

Completing a software project is a team effort. The following options are

available for applying human resources to a project that will require ‘n’ people

working for ‘K’ years.

• ‘n’ individuals are assigned to ‘m’ different functional tasks.

• ‘n’ individuals are assigned to ‘m’ different functional tasks (m<n) so that

informal teams are established and coordinated by project manager.

• ‘n’ individuals are organized into ‘t’ teams and each team is assigned

one/more functional tasks.

Even though the above three approaches have their pros and cons, option 3

is most productive.

There are several roles within each software project team. Some of the roles

in a typical software project are listed below:

Designation Job Profile

Project

Manager

Initiates, plans, tracks and manages resources of an entire

project

Module

Leader

A software engineer who manages and leads the team working

on a particular module of the software project. The module

leader will conduct reviews and has to ensure the proper

 38

functionality of the module

Analyst A software engineer who analyzes the requirements gathered.

Analysis of the requirements is done to get a clear

understanding of the requirements.

Domain

Consultant

An expert who knows the system of which the software is a

part. This would involve the technical knowledge of how the

entities of the domain interface with the software being

developed. For example, a banking domain consultant or a

telecom domain consultant.

Reviewer A software engineer who reviews artifacts like project

documents or code. The review can be a technical review

which scrutinizes the technical details of the artifact. It could

be a review where the reviewer ascertains whether or not the

artifact adheres to a prescribed standard

Architect A software engineer involved in the design of the solution after

the analyst has clearly specified the business requirements

Developer A software engineer, who writes the code, tests it and delivers

it error free

Tester A software engineer who conducts tests on the completed

software or a unit of the software. If any defects are found

these defects are logged and a report is sent to the owner of

the tested unit.

Programming Team Structure

Every programming team must have an internal structure. The best team

structure for any particular project depends on the nature of the project and

the product, and on the characteristics of the individual team members. Basic

team structure includes:

a. Democratic team: Team Member participate in all decisions

b. Chief Programmer Team: A chief programmer is assisted and

supported by other team members.

c. Hierarchical Team: The project leader assigns tasks attend reviews and

walkthrough, detects problem areas, balances the workload and

participates in technical activities.

Democratic Team

 39

This was first described by Weinberg as the “egoless team”. In an egoless

team goals are set and decisions made by group consensus. Group leadership

rotates from member to member based on the tasks to be performed and the

differing abilities of the team members. Work products (requirements, design,

source code, user manual, etc) are discussed openly and are freely examined by

all team members.

Advantage:

� Opportunity for each team member to contribute to decision

� Opportunity for team members to learn from one another

� Increased Job satisfaction that results from good communication in open,

non-threatening work environments.

Disadvantages

� Communication overhead required in reaching decision,

� All team members must work well together,

� Less individual responsibility and authority can result in less initiative

and less personal drive from team members.

The chief programmer team

Baker's organizational model ([Baker 1972])

� Important characteristics:

• The lack of a project manager who is not personally involved in

system development

• The use of very good specialists

• The restriction of team size

� The chief programmer team consists of:

• The chief programmer

• The project assistant

• The project secretary

• Specialists (language specialists, programmers, test specialists).

� The chief programmer is actively involved in the planning, specification and

design process and, ideally, in the implementation process as well.

� The chief programmer controls project progress, decides all important

questions, and assumes overall responsibility.

� The qualifications of the chief programmer need to be accordingly high.

 40

� The project assistant is the closest technical coworker of the chief

programmer.

� The project assistant supports the chief programmer in all important

activities and serves as the chief programmer's representative in the latter's

absence. This team member's qualifications need to be as high as those of

the chief programmer.

� The project secretary relieves the chief programmer and all other

programmers of administrative tasks.

� The project secretary administrates all programs and documents and assists

in project progress checks.

� The main task of the project secretary is the administration of the project

library.

� The chief programmer determines the number of specialists needed.

� Specialists select the implementation language, implement individual

system components, choose and employ software tools, and carry out tests.

Advantages

• The chief programmer is directly involved in system development and can

better exercise the control function.

• Communication difficulties of pure hierarchical organization are

ameliorated. Reporting concerning project progress is institutionalized.

• Small teams are generally more productive than large teams.

Disadvantages

• It is limited to small teams. Not every project can be handled by a small

team.

• Personnel requirements can hardly be met. Few software engineers can

meet the qualifications of a chief programmer or a project assistant.

• The project secretary has an extremely difficult and responsible job,

although it consists primarily of routine tasks, which gives it a

subordinate position. This has significant psychological disadvantages.

Due to the central position, the project secretary can easily become a

bottleneck.

The organizational model provides no replacement for the project secretary. The

loss of the project secretary would have failing consequences for the remaining

course of the project.

Hierarchical organizational model

� There are many ways to organize the staff of a project. For a long time the

organization of software projects oriented itself to the hierarchical

organization common to other industrial branches. Special importance is

 41

vested in the decomposition of software development into individual phases.

A responsible leader is assigned to each of the phases, which are led and

controlled by the project leader and which, depending on the size of the

project, are led and controlled either by a single person or by a group leader.

� The project manager normally also has a project management staff with

advisory and administrative tasks.

� The larger the project, the greater is the number of hierarchy levels in the

organizational schema.

The project manager's tasks and responsibilities encompass

• personnel selection,

• assignment and management,

• planning of and division of labor for the project,

• project progress checks, and

• appropriate measures in case of cost or schedule overruns.

� The project management staff includes personnel who advise the project

manager in task-specific questions, provide support in administrative tasks

concerning project progress checks, prepare project standards, provide the

necessary resources, and carry out training for project team members as

needed.

� The managers at the middle management level are responsible for planning,

execution and control of phase-related activities of the software life cycle.

2.7. OTHER PLANNING ACTIVITIES

Project management is the discipline of defining and achieving targets

while optimizing the use of resources (time, money, people, materials, energy,

space, etc) over the course of a project (a set of activities of finite duration).

Project Management is quite often the province and responsibility of an

individual project manager. This individual seldom participates directly in the

activities that produce the end result, but rather strives to maintain the

progress and productive mutual interaction of various parties in such a way

that overall risk of failure is reduced.

In contrast to on-going, functional work, a project is "a temporary

endeavor undertaken to create a unique product or service." The duration of a

project is the time from its start to its completion, which can take days, weeks,

months or even years. Typical projects include the engineering and construction

of various public or consumer products, including buildings, vehicles, electronic

devices, and computer software.

Project Management is composed of several different types of activities such as:

 42

• Planning the work

• Assessing risk

• Estimating resources

• Organizing the work

• Acquiring human and material resources

• Assigning tasks

• Directing activities

• Controlling project execution

• Reporting progress

• Analyzing the results based on the facts achieved

Project control variables

Project Management tries to gain control over five variables:

Time - The amount of time required to complete the project. Typically broken

down for analytical purposes into the time required to complete the components

of the project, which is then further broken down into the time required to

complete each task contributing to the completion of each component.

Cost - Calculated from the time variable. Cost to develop an internal project is

time multiplied by the cost of the team members involved. When hiring an

independent consultant for a project, cost will typically be determined by the

consultant or firm's hourly rate multiplied by an estimated time to complete.

Quality - The amount of time put into individual tasks determines the overall

quality of the project. Some tasks may require a given amount of time to

complete adequately, but given more time could be completed exceptionally.

Over the course of a large project, quality can have a significant impact on time

and cost (or vice versa).

Scope - Requirements specified for the end result. The overall definition of what

the project is supposed to accomplish, and a specific description of what the

end result should be or accomplish.

Risk - Potential points of failure. Most risks or potential failures can be

overcome or resolved, given enough time and resources.

Three of these variables can be given by external or internal customers.

The value(s) of the remaining variable(s) is/are then set by project management,

ideally based on solid estimation techniques. The final values have to be agreed

upon in a negotiation process between project management and the customer.

Usually, the values in terms of time, cost, quality and scope are contracted.

2.8. REVIEW QUESTIONS

 43

1. Discuss project scheduling.

2. Discuss Human-resources planning.

3. What kind of team structure would you recommend for waterfall method

and prototyping?

2.9. LET US SUM UP

Defining the problem

1 Develop a definitive statement of the problem to be solved. Include a

description of the present situation, problem constraints, and a statement of

the goals to be achieved. The problem statement should be phrased in the

customer’s terminology

2 Justify a computerized solution strategy for the problem.

3 Identify the functions to be provided by, and the constraints on, the

hardware subsystem, the software subsystem, and the people subsystem.

4 Determine system-level goals and requirements for the development process

and the work products.

5 Establish high-level acceptance criteria for the system.

Developing a solution strategy

6 Outline several solution strategies, without regard for constraints.

7 Conduct a feasibility study for each strategy.

8 Recommend a solution strategy, indicating why other strategies were

rejected.

9 Develop a list of priorities for product characteristics.

Planning the development process

10 Define a life-cycle model and an organizational structure for the project

11 Plan the configuration management, quality assurance, and validation

activities.

12 Determine phase-dependent tools, techniques, and notations to be used

2.10. LESSON END ACTIVITIES

Suppose we wish to computerize the activities of Department, which offer

various programmes of the university. The activities are as follows:

� Forwarding the faculties bio-data to University

� Schedule the classes (both theory and practical)

� Identify Practical Centres

 44

� Collect Assignments from students and get it evaluated by faculties

� Students enquiry

� Dispatch of grades to university

Develop a system requirement Specification, design DFDs, and identify modules

and its operations. Select appropriate data structures for the various modules.

2.11. POINTS FOR DISCUSSION

1. Akkash wants to build a restaurant. He calls upon Rithanya, a famous

architect and builder, for this task. Rithanya goes through the following steps:

a) She first talks to Akkash to understand the general specifications.

b) She then draws the complete plan on how to go about building the

structure.

c) Then, with the help of a contractor, she finishes the building in one year.

The steps that Rithanya has gone through are similar to some of the phases of

the Waterfall Model. Identify them.

2. As far as the new user is concerned, which approach do you think will be

more appreciated – Waterfall or Prototyping?

2.12. REFERENCES

1. Richard Fairley, “Software Engineering Concepts”, Tata McGraw-Hill, 1997.

2. Roger S.Pressman, Software engineering- A practitioner’s Approach,

McGraw-Hill International Edition, 5th edition, 2001.

3. IEEE, Standards Collection, Software Engineering, IEEE, New York, 1994

 45

4. J.C. Wethebe and N.P. Vitalani, System Analysis and Design: Best Approach,

Ed.4, West, St. Paul 1994.

 45

LESSON 3: SOFTWARE COST ESTIMATION

Contents

3.0. Aims and Objectives

3.1. Introduction

3.2. Software Cost Estimation

3.3. Software Cost Factors

3.4. Software Cost Estimation Techniques

3.5. Staffing Level Estimation

3.6. Estimating Software Maintenance Costs

3.7. Review Questions

3.8. Let us Sum up

3.9. Lesson End Activities

3.10. Points for Discussion

3.11. References

3.0. AIMS AND OBJECTIVES

• To Estimate the cost of a software product

• To understand the various factors influence software costs

• To use empirical estimation models

3.1. INTRODUCTION

Software is the most expensive element in most computer-based
systems. A large cost estimation error can make the difference between profit
and loss. Too many variables – human, technical, environmental, political –
can affect the ultimate cost of software and effort applied to it.

3.2. SOFTWARE COST ESTIMATION

Cost estimation

[Boehm 1981], [Putnam 1978], [Albrecht 1983], [Schnupp 1976]

� The necessity of cost estimation stems from the requirements of
scheduling and cost planning. For lack of more precise methods, cost
estimation for software development is almost always based on a
comparison of the current project with previous ones. Due to the
uniqueness of software systems, the number of comparable projects is
usually quite small, and empirical data are seldom available. But even if
there are exact cost records of comparable projects, these data are based
on the technical and organizational conditions under which the
comparable project was carried out at that time.

 46

� The technical and organizational conditions are variable parameters,
which makes empirical data from comparable projects only an unreliable
basis for estimates.

� Relationship between the best and worst programming experience
(referring to the same task, [Schnupp 1976]):

� The time requirement for each task handled in a team consists of two
basic components ([Brooks 1975]):

(1) Productive work

(2) Communication and mutual agreement of team members

If no communication were necessary among team members, then the
time requirement t for a project would decline with the number n of team
members

t ≈ 1/n

If each team member must exchange information with one other and that
the average time for such communication is k, then the development time
follows the formula:

t ≈ 1/n + k. n2/2

"Adding manpower to a late software project makes it later." ([Brooks 1975])

� Most empirical values for cost estimation are in-house and unpublished.
The literature gives few specifications on empirical data, and these often
deviate pronouncedly. The values also depend greatly on the techniques
and tools used.

� Distribution of the time invested in the individual phases of software
development (including the documentation effort by share) according to
the selected approach model and implementation technique ([Pomberger
1996]):

 Approach model: classical sequential software life cycle

 Implementation technique: module-oriented

 problem analysis and system specification.... 25%

 design... 25%

 implementation.. 15%

 testing.. 35%

 Approach model: prototyping-oriented software life cycle

 Implementation technique: module-oriented

 problem analysis and system specification..... 40%

 design... 25%

 implementation.. 10%

 testing.. 25%

Approach model: object- and prototyping-oriented software life cycle
Implementation technique: object-oriented

 47

 problem analysis and system specification..... 45%

 design... 20%

 implementation.. 8%

 testing.. 27%

The following options are useful to achieve reliable cost and effort estimates:

1. Delay estimation until late in the project. The longer we wait, the less
likely we are to make errors in our estimates. However this is not
practical. Cost estimates must be provided “up-front”.

2. Base estimates on similar projects that have already been
completed. This works well if the current project is quite similar to past
efforts. Unfortunately, past experience has not always been a good
indicator of future results.

3. Use “decomposition techniques” to generate project cost and effort
estimates. These techniques use a “divide and conquer” approach to
estimation. By decomposing a project into major functions and related
software engineering activities, cost and effort estimation can be
performed in a step-wise fashion.

Use one or more empirical models for software cost and effort
estimation. A model is based on experience (historical data) and takes the
form d = f(vi), where d is one of a number of estimated variables (eg. effort,
cost, project duration) and vi are selected independent parameters (eg.
Estimated LOC or FP).

3.3. SOFTWARE COST FACTORS

3.3.1. Factors for cost and time estimates

• Experience and qualifications of the estimator

• Type of software (e.g., function-, data- or object-oriented, time-critical
software with high efficiency requirements, control and monitoring
software with high quality requirements)

• Anticipated complexity (e.g., number of components (modules, classes),
number of component couplings, number of methods per class,
complexity of methods)

• Expected size of program (number of statements)

• Experience and qualifications of personnel (e.g., project experience,
programming experience, knowledge of methods, experience in use of
tools, knowledge of problem domain)

• Techniques and tools to be used (e.g., planning, design and
documentation techniques, test strategies and tools, programming
languages)

• Number of staff members

3.3.2. LOC (Lines of Code) Based Estimation

To illustrate the LOC based estimation technique, let us consider the
development of software for Computer-Aided Design (CAD) application. If we

 48

assume that the range of LOC estimates for the 3D geometric analysis
function is:

Optimistic: 4600

Most likely: 6900

Pessimistic: 8600

Applying the equation to compute EV (Earned Value), the expected value for
the 3D geometric analysis function is 6800 LOC. Estimates for all the
modules of the CAD application are computed in a similar fashion. By
summing all the estimated values, an estimate of the lines of code is
established for the CAD software system.

3.3.3. Process-Based Estimation

The process is decomposed into a relatively small set of activities or tasks
and the effort required to accomplish each task is estimated. A process-
based estimation involves the following steps:

1. Delineate the software functions obtained from the project scope.

2. A series of software process activities must be performed for each
function.

3. Functions and related software process activities may be represented as
part of a table.

4. The planner estimates the effort (eg. person-months) that will be required
to accomplish each software process activity for each software function.

5. Average labor rates (eg. cost/unit effort) are applied to the effort
estimated for each process activity.

6. Costs and Effort for each function and software process activity are
computed.

3.4. SOFTWARE COST ESTIMATION TECHNIQUES

Cost estimation models

• COCOMO Model,

• Putnam Estimation Model

• Function Point Model.

COCOMO MODEL

The constructive cost model is an algorithmic cost estimating model;
it is a bottom-up technique. It starts estimating at sub system level and
finally sums up all the estimates.

The steps required to estimate the software cost using COCOMO are as
follows:

• Identify all subsystems and modules in the product.

• Estimate the size of each module and calculate the size of each
subsystem and total system.

 49

• Specify module-level effort multipliers for each module. The module-
level multipliers are: Product complexity, Programmer capability,
virtual machine experience and Programming language experience.

• Compute the module effort and development time estimates for each
module and its subsystems.

• Compute the total system effort and development time.

• Perform a sensitivity analysis on the estimate to establish tradeoff
benefits

• Add other development costs, such as planning and analysis that are
not included in the estimate.

• Compare the estimate with one developed top-down Delphi estimation.
Identify and rectify the differences in the estimates.

The COCOMO Models are defined for three classes of software projects. They
are:

1. organic mode – relatively small, simple software projects in which small
teams with good application experience work to a set of less than rigid
requirements (e.g. A thermal analysis program developed for a heat
transfer group)

2. semi-detached mode – an intermediate software project in which teams
with mixed experience levels must meet a mix of rigid and less than rigid
requirements (e.g. A transaction processing system with fixed
requirements for terminal hardware and database software)

3. embedded mode – a software project that must be developed with a set
of tight hardware, software, and operational constraints. (eg. Flight
control software for aircraft).

Software Project Estimation using COCOMO:

Nominal Effort equation

 PM = ai KLOC bi

 TDEV = ci E di

Where PM is Programmer months

 TDEV is Product Development time in months.

 KLOC is number of delivered lines of code.

 ai, ci is coefficients

 bi, di is exponents.

Coefficients and exponents are:

S/W Project ai bi ci di

Organic 3.2 1.05 2.5 0.38

Semi-
detached

3.0 1.12 2.5 0.35

 50

Embedded 2.8 1.20 2.5 0.32

Example:

Consider the product to be developed in 10-KLOC embedded mode s/w
product.

 PM = (2.8) * (10)1.20

 = 44.4

 TDEV = (2.5) * (44)0.32

 =8.4

It is predicted that 44.4. Programmer months and 8.4 elapsed months for
product development.

Check your progress

i. Three different cost estimation models are ________, _______ and

ii. The COCOMO Models are defined for three classes of software projects.
They are ___________, ____________ and _________

iii. Important factors of Cost estimation are _________ , _______ and

iv. Boehm's maintenance cost estimation is calculated in terms of a quantity
called the ___________________

Solutions

I

Ii

Iii

Iv

3.5. STAFFING LEVEL ESTIMATION

Estimating Staff includes the processes required to make the most effective
use of the people involved with the project. It includes both organizational
positions (e.g. Manager, senior software engineer, etc.) and specialty (e.g.
Telecommunications, database, etc.). The number of people required varies
for every software project and it can be determined only after an estimate of
development effort is made.

 51

Project schedule primarily depends on effort. However, the relationship is
not linear. During the earlier phases of the project like Requirement
Analysis and HLD a lesser number of people would be required as against
those required during the Build phase (for coding and unit testing). Once
Build phase is complete, the staff requirement for the next phase i.e. the
Testing phase would be lower. While staffing a project, adequate care is
taken to have a blend of experienced and non-so-experienced people.

3.6. ESTIMATING SOFTWARE MAINTENANCE COSTS

Maintenance Costs

• Typical software organizations spend anywhere from 40 to 70 percent
of all funds for maintenance.

• Maintenance-bound organizations result loss or postponement of
development opportunities.

• Customer dissatisfaction when requests cannot be addressed.

• Reduction in overall software quality as a result of changes that
introduce latent errors in the maintained software.

Maintenance cost factors

Non-technical factors

• Application domain

• Staff stability

• Program age

• External environment

• Hardware stability

1) The application being supported.

If the application of the program is clearly defined and well
understood, the system requirements may be definitive and
maintenance due to changing requirements minimized.

If the application is completely new, it is likely that the initial
requirements will be modified frequently, as users gain experience
with the system.

2) Staff stability. It is easier for the original writer of a program to
understand and change a program rather than some other individual
who must understand the program by study of its documentation and
code listing.

If the programmer of a system also maintains that system,
maintenance costs will be reduced.

In practice, the nature of the programming profession is such that
individuals change jobs regularly. It is unusual for one person to develop
and maintain a program throughout its useful life.

3) The lifetime of the program.

 The useful life of a program depends on its application.

 52

Programs become obsolete when the application becomes obsolete or
their original hardware is replaced and conversion costs exceed
rewriting costs.

The older a program, the more it has been maintained and the more
degraded its structure.

Maintenance costs tend to rise with program age.

4) The dependence of the program on its external environment.

If a program is dependent on its external environment it must be
modified as that environment changes. For example, changes in a
taxation system might require payroll, accounting, and stock control
programs to be modified. Taxation changes are relatively common and
maintenance costs for these programs are related to the frequency of
these changes.

A program used in a mathematical application does not normally
depend on humans changing the assumptions on which the program
is based.

5) Hardware stability.

If a program is designed to operate on a particular hardware
configuration and that configuration does not change during the
program's lifetime, no maintenance costs due to hardware changes will
be incurred. However, hardware developments are so rapid that this
situation is rare. The program must be modified to use new hardware
which replaces obsolete equipment.

Maintenance cost estimation

Boehm's maintenance cost estimation

� Boehm's maintenance cost estimation ([Boehm 1981]) is calculated in
terms of a quantity called the Annual Change Traffic (ACT) which is
defined as follows:

The fraction of a software product's source instructions which undergo
change during a (typical) year either through addition or modification.

 ACT = (DSIadded + DSImodified) / DSItotal

 PM = ACT * MM

 where

 DSI is no. of source instructions

 PM is no. of Program months.

 MM is no. of months for development

A further enhancement is provided by an effort adjustment factor EAF

 PM = ACT * EAF * MM

Where

 EAF – recognize that the effort multipliers for maintenance may be
different from the effort multipliers used for development.

 53

3.7. REVIEW QUESTIONS

1. Define Estimation

2. What are the types of estimation?

3. What are the factors that affect the efficiency of estimation? Explain the
factors.

4. Discuss estimation using decomposition techniques

5. Discuss empirical estimation models.

6. Write a note on automated estimation tools.

7. Specify, design and develop a program that implements COCOMO model.

8. Discuss the importance of making correct estimates project management

3.8. LET US SUM UP

• COCOMO was proposed by Barry W. Boehm in Software Engineering
Economics.

• COCOMO covers a broad spectrum of software development projects:

• From application software to systems software

• From small software to large software

• From new development to modifications / enhancements

• This model is good for estimating both effort and elapsed time by
project phases

• The model needs lines-of-code as input

3.9. LESSON END ACTIVITIES

i. Some experimental evidence suggests that the initial size estimate for a
project affects the nature and results of the project. Consider two
different managers charged with developing the same application one
estimates that the size of the application will be 50,000 lines while the
other estimates that will be 1,00,000 lines. Discuss how these
estimates affect the project throughout its life cycle.

3.10. POINTS FOR DISCUSSION

i. Use the COCOMO equations to estimate the programmer-months and
development time for your term project. Prepare a range of estimates
based on probable product size.

 54

3.11. REFERENCES

1. Richard Fairley, “Software Engineering Concepts”, Tata McGraw-Hill,
1997.

2. Roger S.Pressman, Software engineering- A practitioner’s Approach,
McGraw-Hill International Edition, 5th edition, 2001.

3. http://sunset.usc.edu/COCOMO2.0/Cocomo.html

4. Matson, J., B. Barett, and J. Mellichamp, “Software Development Cost
Estimation Using Funciton Points”, IEEE Trans. Software Engineering vol.
20, no 4, April 1994, pp. 275-287

 55

LESSON 4: REQUIREMENT SPECIFICATIONS

Contents

4.0. Aims and Objectives

4.1. Introduction

4.2. The Software Requirement Specification

4.3. Formal Specification Techniques

4.4. Languages and Processors for requirements specification

4.5. Review Questions

4.6. Let us Sum up

4.7. Lesson End Activities

4.8. Points for Discussion

4.9. References

4.0. AIMS AND OBJECTIVES

• To understand the sate of “what” of the software product without
implying “how”.

• Define system elements like software, hardware, people data base,
documentation, and procedures.

4.1. INTRODUCTION

A complete understanding of the software requirements is essential to
the success of a software development effort. Requirements analysis task is a
process of discovery, refinement, modeling, and specification. The specification
produced becomes the foundation for all software engineering activities.

Requirements Analysis is a software engineering task that bridges the gap
between system-level software allocation and software design (See Figure 4.1).

Requirements analysis enables the system engineer to,

• Specify software function & performance,

• Indicate software’s interface with other system elements.

• Establish design constraints that the software must meet.

Requirements analysis allows the software engineer to,

• Refine the software allocation

• Build models of the process, data and domains

 56

Requirements analysis provides the software engineer,

• Information of data, architectural and procedural design.

• Means to assess software quality, with the help of requirements
specification.

Figure 4.1.: Requirements Analysis - a bridge between System Engg. &

Design

Software requirements analysis may be divided into the following five areas of
effort:

� Problem Recognition

� Evaluation & Synthesis

� Modeling

� Specification, and

� Review

Problem Recognition: Initially the analyst studies the system specification and
the software project plan. Next communication for analysis must be established
so that problem recognition is ensured. The goal of the analyst is to identify the
basic problem elements as perceived by the user/customer.

Evaluation & Synthesis: The analyst must define all data objects, evaluate the
flow and content of information, define software functions and establish system
interface characteristics considering the context of events that affect the system
and uncover additional design constraints.

Upon evaluating current problems and desired information, the analyst begins
to synthesize one or more solutions. To begin, the data processing functions,
and behavior of the system are defined in detail. Next basic architectures for
implementation are considered. The process of evaluation and synthesis
continues till both the customer and analyst feel confident that the software
can adequately be specified for subsequent development steps.

System

Engineering

Requirement

Analysis

Software

Design

 57

Modeling: Developing a model for an industrial-strength software system prior
to its construction or renovation is as essential as having a blueprint for large
building. Good models are essential for communication among project teams
and to assure architectural soundness. As the complexity of systems increase,
so does the importance of good modeling techniques. The analyst creates
models of the system to better understand data and control flow, functional
processing, and behavioral operation. The model serves as a foundation for
software design and as the basis for the creation of a specification.

Specification: The final output of the requirements analysis is the creation of a
Software Requirements Specification (SRS) document. For simple problems the
specification activity might be the end result of the entire analysis. However in
most real life problems, the problem analysis and specification are done
concurrently. A good SRS should be understandable, complete, consistent, and
unambiguous.

Review: Requirements reviews are the most common method employed for
validating the requirements specifications. Reviews are used throughout
software development for quality assurance and data collection. Requirements
review is a review by a group of people to find out errors and point out other
matters of concern in the requirements specifications of a system.

4.1.1. Specification Principles

The list of basic specification principles given below will provide a basis for
representing software requirements.

1. Separate functionality from implementation.

2. Develop a model of the desired behavior of a system that encompasses
data and the functional responses of a system to various stimuli from the
environment.

3. Establish the context in which software operates by specifying the
manner in which other system components interact with software.

4. Define the environment in which the system operates and indicate how
“a highly twisted collection of agents react to stimuli in the environment
produced by those agents.

5. Create a cognitive (perception) model rather than design or
implementation model. The cognitive model describes a system as
perceived by its user community.

6. Recognize that “the specification must be tolerant of incompleteness and
augmentable”. A specification is always a model – an abstraction - of
some real situation that is normally quite complex. Hence it will be
incomplete and will exist at many levels of detail.

7. Establish the content and structure of a specification in a way that will
enable it to be amenable to change.

Check your progress

 58

i. Requirements Analysis is a software engineering task that bridges the gap
between _______________ and ______________

ii. Requirements analysis enables the system engineer to _________, __________
and ____________

iii. Requirements analysis provides the software engineer to _________ and

iv. Two types of formal specifications they are _________

Solutions

I

Ii

Iii

Iv

4.2. THE SOFTWARE REQUIREMENT SPECIFICATION

The Format of a requirements specification document is presented in the
following Table.

Section Requirement Specification

1. Product Overview and Summary

2. Development, Operating and Maintenance
Environments

3. External Interface and Data Flow

4. Functional Requirements

5. Performance Requirements

6. Exception Handling

7. Early subsets and Implementation
Priorities

 59

8. Foreseeable Modifications and
Enhancements

9. Acceptance Criteria

10. Design Hints and Guidelines

11. Cross-Reference Index

12. Glossary of Terms

There are number of desirable properties that a software requirement
specification should processes. They are:

� Correct

� Complete

� Consistent

� Unambiguous

� Functional

� Verifiable

� Traceable

� Easily changed

4.3. FORMAL SPECIFICATION TECHNIQUES

 pecifying the functional characteristics of a software product is one of the
most important activities to be accomplished during requirements analysis.
Formal specifications have the advantage of being brief and clear-cut, they
support formal reasoning about the functional specifications, and they provide
a basis for verification of the resulting software product. Formal notations are
not appropriate in all situations or for all types of systems. However, our
experience indicates that there is usually too little formalism in software
development, rather than too much hence, our emphasis on formalism.

There are two types of formal specifications they are:

1. Relational Notations

2. State-Oriented Notations

Relational Notations

 elational Notations are based on the concepts of entities and attributes.
Entities are named elements in a system; the names are chosen to denote the
nature of the elements (e.g., stack, queue). Attributed are specified by applying
functions and relations to the name entities. Attributes specify permitted
operations on entities, relationships among entities, and data flow between
entities.

 60

Example:

Implicit equations, recurrence relations, algebraic axioms and regular
expressions.

State-Oriented Notations

 he state of a system is the information required to summarize the status
of system entities at any particular point in time; given the current state and
the current stimuli, the next state can be determined. The execution history by
which the current state was attained does not influence the next state; it is only
dependent on the current state and current stimuli.

Example:

Decision tables, event tables, transition tables, finite-state mechanisms,
and Petri nets.

4.4. Languages & Processors for Requirements Specification

A number of special-purpose languages and processors have been
developed to permit concise statement and automated analysis of requirements
specifications for software. Some specification languages are graphical in
nature, while others are textual; all are relational in nature. Some specification
languages are manually applied and other has automated processors. Some are
the specification languages are:

a. PSL/PSA

b. RSL/REVS

c.SADT

d. SSA

e. GIST

a. PSL/PSA

The Problem Statement Language (PSL) was developed by Prof. Daniel
Teichrow at the University of Michigan. The Problem Statement Analyzer (PSA)
is the PSL processor.

The objective of PSL is to permit expression of much of the information
that commonly appears in a Software Requirements Specification. In PSL,
system descriptions can be divided into eight major aspects:

i. System input/output flow

ii. System structure

iii. Data structure

iv. Data derivation

v. System size and volume

 61

vi. System dynamics

vii. System properties

viii. Project management

PSL contains a number of types of objects and relationships to permit
description of these eight aspects. The system input/output flow aspect deals
with the iteration between a system and its environment.

The Problem Statement Analyzer (PSA) is an automated analyzer for
processing requirements stated in PSL.

b. RSL/REVS

The Requirements Statement Language (RSL) was developed by the TRW
Defense and Space Systems Group to permit brief and clear-cut specification of
requirements for real-time software systems. The Requirements Engineering
Validation Systems (REVS) processes and analyzes RSL statements; both RSL
and REVS are components of the Software Requirements Engineering
Methodology. Many of the concepts in RSL are based on PSL.

c. SADT

Structured Analysis and Design Technique (SADT) was developed by D.T.
Ross and Colleagues at Softech, Inc. SADT incorporates a graphical language
and set of methods and management guidelines for using the language. The
SADT language is called the language of Structured Analysis (SA). The SA
language and the procedures for using it are similar to the engineering
blueprint systems used in civil and mechanical engineering.

d. SSA

Structured System Analysis is used primarily in traditional data
processing environments. Like SADT, SSA uses a graphical language to build
models of systems. Unlike SADT, SSA uses graphical concepts; however, SSA
does not provide the variety of structural mechanisms available in SADT. There
are four basis features in SSA: data flow diagrams, data dictionaries, procedure
logic representation and data store structuring techniques. SSA data flow
diagrams are similar to SADT diagrams, but they do not indicate mechanism
and control, and an additional notation is used to show data stores.

e. GIST

Gist is a formal specification language developed at the USC/Information
Sciences Institute by R. Balzar and colleagues. Gist is a textual language based
on a relational model of objects and attributes. A Gist specification is a formal
description of valid behaviors of a system. A specification is composed of three
parts:

i. A specification of object types and relationships between these types.
This determines a set of possible states.

ii. A specification of actions and demons which define transitions
between possible states.

 62

iii. A specification of constraints on states and state transitions.

4.5. REVIEW QUESTIONS

1. Define requirements analysis.

2. List requirements analysis tasks.

3. Discuss the problems with requirements analysis.

4. Discuss Balzer and Goldman’s specification principles.

5. List the different analysis methods.

4.6. LET US SUM UP

Software requirements definition is concerned with preparation of the software
Requirements Specifications. The format and contents of the Software
Requirements Specification have been discussed, and relational and state
oriented notations for specifying the functional characteristics of a software
product were presented.

Several notations are automated tools for software requirements were described.
Some of the notations (SADT and SSA) do not have automated processors, but
are on the other hand useful techniques. Most of the automated tools for
requirements definition are in fact analysis and design tools; they incorporate
notations for describing structure and processing details.

4.7. LESSON END ACTIVITIES

i. In an organization of your choice, determine whether automated tools are
used for requirements analysis.

ii. If automated tools are used, what are the good and bad experiences of the
tools users?

iii. If automated tools are not used, why not? Is there any plan to experiment
with automated tools? Why or why not?

4.8. POINTS FOR DISCUSSION

i. Obtain, from an organization of your choice, a Software Requirement
Specifications. Assess the strengths ad weakness of the document in
terms of the suggested format and contents.

 63

4.9. REFERENCES

1. Pressman R., Software Engineering: A practitioner's Approach, (4th ed.),
McGraw-Hill, 1997

2. Sommerville I.,Software Engineering (5th ed.), Addison-Wesley, 1996.

3. IEEE Std 830-1988, IEEE Recommended Practice for Software
Requirements Specifications. IEEE Computer Society

4. www. Imappl.org/crest/environment.html.

 64

 65

LESSON 5: SOFTWARE DESIGN

Contents

5.0. Aims and Objectives

5.1. Introduction

5.2. Fundamental Design Concepts

5.3. Modules and Modularization Criteria

5.4. Coupling and Cohesion

5.5. Effective Modular Design

5.6. Design Notations Considerations

5.7. Design Techniques

5.8. Review Questions

5.9. Let us Sum up

5.10. Lesson End Activities

5.11. Points to Discussion

5.12. References

5.0. AIMS AND OBJECTIVES

• To understand the concept of various Internal and External Design of
software development process.

• To define procedural design and its concepts-structured programming,
flow charts, looping constructs and box diagram.

• To understand the concepts of modular design, Functional independence,
Cohesion and its types, Coupling and its types.

5.1. INTRODUCTION

Design is the first step in the development phase for any engineered
product or system. The term design is used in two ways. Used as a verb, it
represents the process of design. Used as a noun, it represents the result of the
design process, which is the design for the system. The goal of design process is
to produce a model or representation of a system, which can be used later to
build that system. The produced model is called the design of the system.

Software design is an iterative process through which requirements are
translated into a “blueprint” for constructing the software. Each of the elements
of the requirements analysis model provides information that is required to

 66

create a design model. The flow of information during software design is
illustrated in Figure 5.1.

Characteristics of a Good Design

The design should:

• Exhibit hierarchical representation of software components

• Be modular

• Contain district representation of data and procedure.

• Have modules exhibiting independent functional characteristics,

• Minimize the complexity of interface

Figure 5.1. The Design Model

5.2. FUNDAMENTAL DESIGN CONCEPTS

Fundamental software design concepts provide the necessary framework for
“getting a program right”. A set of fundamental software design concepts has
evolved over the years and each provides the software designer with a
foundation from which more sophisticated design methods can be applied. Each
concept helps the software engineer to answer the following questions:

• What criteria can be used to partition software into individual
components?

• How function or data is structure is separated from a conceptual
representation of the software?

• Are there uniform criteria that define the technical quality of a software
design?

The fundamental design concepts are:

• Abstraction - allows designers to focus on solving a problem without
being concerned about irrelevant lower level details (procedural

 67

abstraction - named sequence of events, data abstraction - named
collection of data objects)

• Refinement - process of elaboration where the designer provides
successively more detail for each design component

• Modularity – Software is divided into different modules that are
integrated. Since the monolithic software is difficult to grasp, we need to
decompose them into modules. But care should be taken when
modularising. Because at one point of time, recursive modularising will
increase the total effort.

• Software architecture - overall structure of the software components
and the ways in which that structure provides conceptual integrity for a
system

• Control hierarchy or program structure - represents the module
organization and implies a control hierarchy, but does not represent the
procedural aspects of the software (e.g. event sequences)

• Structural partitioning - horizontal partitioning defines three partitions
(input, data transformations, and output); vertical partitioning (factoring)
distributes control in a top-down manner (control decisions in top level
modules and processing work in the lower level modules).

• Data structure - representation of the logical relationship among
individual data elements (requires at least as much attention as
algorithm design)

• Software procedure - precise specification of processing (event
sequences, decision points, repetitive operations, data
organization/structure)

Information Hiding

The principle of information hiding suggests that modules be
“characterized by design decisions that hide from all others”. In other words,
modules should be specified and designed so that information contained within
a module is inaccessible to other modules that have no need for such
information. Hiding implies that effective modularity can be achieved by
defining a set of independent modules that communicate with one another only
that information that is necessary to achieve software function.

Procedural Design

Procedural design occurs after data, architectural, and interface designs
have been established. The procedural specification required to define
algorithmic details would be stated in a natural language like English. All
members of a software development organization can understand this common
natural language. But the disadvantage in using this natural language is that
we can write a set of procedural steps in too many different ways. Because it is
difficult to specify procedural detail unambiguously, a more constrained mode
for representing procedural detail must be used.

5.3. MODULES AND MODULARIZATION CRITERIA

 68

Architectural design has the goal of producing well-structured, modular
software systems. In this section we consider a software module to be name
entity having the following characteristics:

i. Modules contain instructions, processing logic, and data structures.

ii. Modules can be separately compiled and stored in a library.

iii. Modules can be included in a program.

iv. Module segments can be used by invoking a name and some
parameters.

v. Modules can use other modules.

Examples of modules include procedures, subroutines, and functions;
functional groups of related procedures, subroutines, and functions; data
abstraction groups; utility groups and concurrent processes.

5.3.1. Software Architecture

Software architecture is the overall structure of the software and the ways
in which that structure provides conceptual integrity for a system. Architecture
is the hierarchical structure of program components, the manner in which
these components interact, and the structure of the data that are used by the
components.

One goal of software design is to derive an architectural rendering of a system.
This rendering serves as a framework from which more detailed design activities
are conducted. A set of architectural patterns enables a software engineer to
reuse design level concepts.

5.3.2. Control Hierarchy

Control hierarchy, also called program structure, represents the
organization of program components and implies a hierarchy of control. It does
not represent procedural aspects of software such as sequence of processes,
occurrence/order of decisions, or repetition of operations.

A tree-like diagram is used to represent the hierarchy. Depth provides an
indication of the number of levels of control. Width indicates the overall span of
control. Fan-out is a measure of the number of modules that are directly
controlled by another module. Fan-in indicates how many modules directly
control a given module. The control relationship among modules is expressed in
the following way: A module that controls another module is said to be
superordinate to it; conversely, a module controlled by another is said to be
subordinate to the controller.

The control hierarchy represents two subtly different characteristics of
the software architecture: visibility, and connectivity. Visibility indicates the set
of program components that may be invoked or used as data by a given
component, even when this is accomplished indirectly. Connectivity indicates
the set of components that are directly invoked or used as data by a given
component.

 69

5.3.3. Structural Partitioning

The program structure should be partitioned both horizontally and vertically.

Horizontal partitioning defines separate branches of the modular hierarchy
for each major program function. The simplest approach to horizontal
partitioning defines three partitions – input, data transformation, and output.

The benefits of horizontal partitioning are:

• Results in software that is easier to test

• Leads to software that is easier to maintain

• Results in propagation of fewer side effects

• Results in software that is easier to extend

The disadvantages of horizontal partitioning are:

• Causes more data to be passed across module interfaces and hence
complicates the overall control of program flow.

Vertical partitioning, often called factoring, suggests that control and work
should be distributed top-down in the program architecture. Top-level modules
should perform control functions and relatively little processing work. Low-level
modules should perform all input, computational, and output tasks.

The advantages of vertical partitioning are:

• Vertically partitioned architectures are less likely to be at risk to side
effects when changes are made and hence more maintainable.

5.3.4. Data Structure

Data structure is a representation of the logical relationship among individual
elements of data. Data structure dictates the organization, methods of access,
degree of associativity, and processing alternatives for information. The
following are some classic data structures that form the building blocks for
more sophisticated structures:

• Scalar Item: A scalar item represents a single element of information
that may be addressed by an identifier.

• Sequential Vector: When scalar items are organized as a list or
contiguous group, a sequential vector is formed.

• Array: When the sequential vector is extended to two, three, and even to
arbitrary number of dimensions, an n-dimensional space is created. It is
known as an array.

• Linked List: A linked list organizes noncontiguous scalar items, vectors,
or spaces in a manner that enables them to be processed as a list.

Software Procedure

Software procedure focuses on the processing details of each module
individually. Procedure must provide a precise specification of processing,

 70

including sequence of events, exact decision points, repetitive operations, and
even data organization/structure.

5.4. COUPLING AND COHESION

 A fundamental goal of software design is to structure the software
product so that the number and complexity of interconnections between
modules is minimized. An appealing set of heuristics for achieving this goal
involves the concepts of coupling and cohesion.

5.4.1. Cohesion

 A cohesive module performs a single task within a software procedure,
requiring little interaction with procedures being performed in other parts of a
program. Cohesion is a measure of relative functional strength of a module as
shown in fig. 5.2.,

Cohesion Logical Temporal Procedural Communication Sequential Functional

↓ ↓ ↓ ↓ ↓ ↓ ↓

Low High

Fig. 5.2. Cohesion

 A module that performs a set of tasks that relate to each other loosely, if
at all, is termed coincidentally cohesive. A module that performs tasks that
are related logically is logically cohesive. When a module contains tasks that
are related by the fact that all must be executed within the same span of time,
the module exhibits temporal cohesion. When processing elements of a
module are related and must be executed in a specific order, procedural
cohesion exists. When all processing elements concentrate on one area of a
data structure, communicational cohesion is present. It is unnecessary to
determine the precise level of cohesion. Rather, it is important to strive for
high cohesion.

5.4.2. Coupling

 Coupling is a measure of the interconnection among modules in a
program structure. In software design, one must strive for low coupling.
Simple connectivity among modules results in software that is easier to
understand and less liable to a “ripple effect” caused when errors occur at one
location and propagate through a system. See Fig. 5.3.

No
direct

Data
coupling

Stamp
coupling

Control
coupling

External
coupling

Common
coupling

Content
coupling

 71

coupling

↓ ↓ ↓ ↓ ↓ ↓ ↓

Low High

Fig. 5.3. Coupling

 When there are different modules and each is unrelated, there exists no
direct coupling. When a simple data is passed from one module to another,
and a one-to-one correspondence of items exists, data coupling is said to exist.
Stamp coupling is found, when a portion of a data structure is passed via a
module interface. Control coupling exists when a control flag is passed
between modules. A control flag is a variable that controls decisions in a
subordinate or superordinate module. When modules are tied to an
environment external to the software, external coupling exists. However this
form of coupling must be limited to a small number of modules with a structure.
When a number of modules reference a global data area, common coupling
occurs. Diagnosing problems in structures with considerable common coupling
is time-consuming and difficult. Content coupling occurs, when one module
makes use of data or control information maintained within the boundary of
another module. Secondarily, content coupling occurs when branches are made
into the middle of a module. This form of coupling should be avoided.

Data Design

Data design is the first of four design activities that are conducted during
the software development. The data structure has a considerable impact on the
program structure and procedural complexity. Hence data design is said to
have a profound influence on software quality. The concepts of information
hiding and data abstraction provide the foundation for an approach to data
design.

The process of data design as summarized by Wasserman:

 The primary activity during data design is to select logical
representations of data objects (data structures) identified during the
requirements definition and specification phase. The selection process may
involve algorithmic analysis of alternative structures in order to determine the
most efficient design or may simply involve the use of a set of modules that
provide the desired operations upon some representation of an object. An
important related activity during design is to identify those program modules
that must operate directly upon the logical data structures. In this way the
scope of effect of individual data design decisions can be constrained.

Wasserman has proposed a set of principles that may be used to specify and
design data. The set of principles for data specification are:

 72

1. The systematic analysis principles applied to function and behavior should
also be applied to data.

2. All data structures and the operations to be performed on each should be
identified.

3. A data dictionary should be established and used to define both data and
program design.

4. Low-level data design decisions should be deferred until late in the design
process.

5. The representation of data structures should be known only to those
modules that must make direct use of the data contained within the
structure.

6. A library of useful data structures and the operations that may be applied to
them should be developed.

7. A software design and programming language should support the
specification and realization of abstract data types.

5.5. EFFECTIVE MODULAR DESIGN

A modular design reduces complexity, facilitates change, and results in
an easier implementation by encouraging parallel development of different parts
of a system. Software with effective modularity is easier to develop because
function may be compartmentalized and interfaces are simplified. Independent
modules are easier to maintain.

 Functional independence is achieved by developing modules with “single-
minded” function and an “aversion” to excessive interaction with other modules.
Independence is measured using two qualitative criteria: cohesion and coupling.
Cohesion is a measure of the relative functional strength of a module. Coupling
is a measure of the relative interdependence among modules in a program
structure. One must always strive for high cohesion and low coupling.

5.5.1. Design Heuristics for Effective Modular Design

The program architecture is manipulated according to a set of heuristics given
below:

1. Evaluate the “first iteration” of the program structure to reduce

coupling and improve cohesion.

Once program structure has been developed, in order to improve module
independence, modules may be exploded or imploded. An exploded module
becomes two or more modules in the final program structure. An imploded
module is the result of combining the processing implied by two or more
modules. An exploded module leads to a more cohesive design, which is
always sought after. When high coupling is expected, modules can
sometimes be imploded.

2. Attempt to minimize structures with high fan-out; strive for fan-in as

depth increases.

 73

In some structures (such as the one in Figure 5.4), a single module controls
too many modules that are subordinate to it.

Figure 5.4.: Program Structures

Here, all the modules are “pancaked” below a single control module. This
feature indicates that the structure does not make effective use of factoring.
The fan-out value is high in these structures. To have an effective modular
design it is better to minimize such high fan-out and strive for high fan-in. A
structure with high fan-in indicates a number of layers of control and highly
utilitarian modules at the lower levels.

3. Keep scope of effect of a module within the scope of control of that
module.

The scope of effect of a module m is defined as all other nodules that are
affected by a decision made in module m. The scope of control of module m is
all modules that are subordinate and ultimately subordinate to m. For
example, in Fig.5.4. if module e makes a decision that affects module r, then
it is said to be a violation of Heuristic 3, because module r lies outside the
scope of control of module e.

 74

4. Evaluate module interfaces to reduce complexity and redundancy and

improve consistency.

Module interface complexity is a prime cause of software errors. Interface
inconsistency is an indication of low cohesion.

5. Define modules whose function is predictable, but avoid modules that

are overly restrictive.

A module is “predictable” when it can be treated as a black box; that is, the
same external data will be produced regardless of internal processing
details. Modules that have internal “memory” can be unpredictable unless
care is taken in their use.

6. Strive for “controlled entry” modules, avoiding “pathological

connections”.

Pathological connection refers to branches or references into the middle of a
module. Software is easier to understand and to maintain when modules
interfaced are constrained and controlled.

7. Package software based on design constraints and portability

requirements.

Packaging are to the techniques used to assemble software for a specific
processing environment. When a program is said to “overlay” itself in
memory, the design structure may have to be reorganized to group modules
by degree of repetition, frequency of access and interval between calls. Also
“one-shot” modules may be separated in the structure so that they may be
overlaid.

5.6. DESIGN NOTATIONS CONSIDERATIONS

Design notation, coupled with structured programming concepts, enables
the designer to represent procedural detail in a manner that facilitates
translation to code. The commonly used design notations are:

a) Structured Programming

b) Graphical Design Notation (GDN)

c) Tabular Design Notation (TDN)

d) Program Design Language (PDL)

a. Structured Programming

 Structured programming is an important procedural design technique. The three

constructs that are fundamental to structured programming are:

• Sequence – Sequence implements processing steps that are essential in
the specification of any algorithm

• Condition – Condition provides the facility for selected processing based
on some logical occurrence

• Repetition – Repetition provides for looping

 75

Each construct has a predictable logical structure, allowing entry at the top,
and exit at the bottom. This enables a reader to follow procedural flow more
easily. The use of such structured constructs enhances readability, testability,
and maintainability. The structured constructs are logical chunks that allow a
reader to recognize procedural elements of a module rather than read the
design or code line by line. Understanding is enhanced when readily
recognizable logical forms are encountered. Also any program can be designed
and implemented only using the three structured constructs.

b. Graphical Design Notation (GDN)

Graphical tools such as flowchart or box diagram provide excellent
pictorial patterns that readily depict procedural detail. However if graphical
tools are misused, the wrong picture may lead to the wrong software.

i. Data Flow Diagram (DFD)

A data flow diagram is a graphical technique that depicts information flow and
the transforms that applier as data move from input to output. The basic
model of DFD is shown in Fig.5.5 The data flow diagram may be used to
represent system or software at any levels. A level 0 DFD is partitioned into
several bubbles with interconnecting arrows. Each of the processes
represented at level1 are sub functions of the over all system described in the
context model

ii. Flowchart

The flowchart is quite simple pictorially. The symbols used in a flowchart are:

• Box – to indicate a processing step

• Diamond – represents a logical condition

• Arrows – show the flow of control

Figure 5.5: An Example of a Data Flow Diagram

 76

The three structured constructs – sequence, condition, and repetition using the
flowchart symbols are given in Figure 5.6.

Figure 5.6: Flowchart Constructs

iii. Box Diagram

A box diagram has the following characteristics:

1. functional domain is well defined and clearly visible as a pictorial
representation;

2. arbitrary transfer of control is impossible;

3. the scope of local and/or global data can be easily determined;
and

4. Recursion is easy to represent.

The box diagram constructs are given in Figure 5.7.

 77

Figure 5.7. Box Diagram Constructs

c. Tabular Design Notation

 Decision Tables provide a notation that translates actions and conditions
into a tabular form. The table is difficult to misinterpret and may even be used
as a machine readable input to a table driven algorithm. A decision table is
divided into four sections. The upper left hand quadrant contains a list of all
conditions. The lower left hand quadrant contains a list of all actions that are
possible based on combinations of conditions. The right hand quadrants form a
matrix that indicates condition combinations and the corresponding actions
that will occur for a specific combination. Therefore, each column of the matrix
may be interpreted as a processing rule. The decision table nomenclature is
given in Figure 5.8.

Figure 5.8. Decision Table nomenclature

 78

The following steps are applied to develop a decision table:

1. List all actions that can be associated with a specific procedure.

2. List all conditions during execution of the procedure.

3. Associate specific sets of conditions with specific actions, eliminating
impossible combinations of conditions; alternatively, develop every
possible permutation of conditions.

4. Define rules by indicating what action or actions occur for a set of
conditions.

d. Program Design Language

Program Design Language (PDL), also called structured English or
pseudocode, is “ a local language in that it uses the vocabulary of one language
(i.e., English) and the overall syntax of another (i.e., a structured programming
language)”. PDL differs from modern programming languages in the use of
narrative text embedded directly within PDL statements and hence PDL cannot
be complied. However PDL processors can translate PDL into a graphical
representation of design and produce nesting maps, a design operation index,
cross-reference tables, and a variety of other information.

A design language should have the following features:

• A fixed syntax of keywords that provide for all structured constructs,
data declarations, and modularity characteristics

• A free syntax of natural language that describes processing features

• Data declaration facilities that should include both simple and complex
data structures, and

• Subprogram definition and calling techniques that support various
modes of interface description.

A basic PDL syntax should include constructs for subprogram definition,
interface description, and data declaration; and techniques for block structuring,
condition constructs, repetition constructs, and I/O constructs.

5.7. DESIGN TECHNIQUES

The design process involves developing a conceptual view of the system,
establishing system structure, identifying data streams and data stores,
decomposing high level functions into sub-functions, establishing relationships
and interconnections among components, developing concrete data
representations, and specifying algorithmic details.

Design techniques are typically base on two approaches:

• Top-down design, and

• Bottom-up design.

 79

5.7.1. Top-Down Design ([Dijkstra 1969], [Wirth 1971])

� The design activity must begin with the analysis of the requirements
definition and should not consider implementation details at first.

� A project is decomposed into subprojects, and this procedure is repeated
until the subtasks have become so simple that an algorithm can be
formulated as a solution.

� Top-down design is a successive concretization of abstractly described ideas
for a solution.

� Abstraction proves to be the best medium to render complex systems
comprehensible; the designer is involved only with those aspects of the
system that are necessary for understanding before the next step or during
the search for a solution.

5.7.2. Bottom-up design

The fundamental idea:

� To perceive the hardware and layer above it as an abstract machine.

Technique:

� Bottom-up design begins with the givens of a concrete machine and
successively develops one abstract machine after the other by adding needed
attributes, until a machine has been achieved that provides the functionality
that the user requires.

An abstract machine is a set of basic operations that permits the modeling of a
system.

5.7.3. Design decomposition

� The design process is influenced not only by the design approach but also
by the criteria used to decompose a system.

� Numerous decomposition principles have been proposed.

Classification of decomposition methods

1. Function-oriented decomposition. ([Wirth 1971], [Yourdon 1979]).

� A function-oriented system perspective forms the core of the design.

� Based on the functional requirements contained in the requirements
definition, a task-oriented decomposition of the overall system takes
place.

2. Data-oriented decomposition. ([Jackson 1975], [Warnier 1974],
[Rechenberg 1984a])

� The design process focuses on a data-oriented system perspective.

� The design strategy orients itself to the data to be processed.

 80

� The decomposition of the system stems from the analysis of the data.

3. Object-oriented decomposition. ([Abbott 1983], [Meyer 1988], [Wirfs-Brock
1989], [Coad 1990], [Booch 1991], [Rumbaugh 1991])

� An object-oriented system perspective provides the focus of the design.

� A software system is viewed as a collection of objects that
communicate with one another. Each object has data structures that
are invisible from outside and operations that can be executed on
these structures.

� The decomposition principle orients itself to the unity of data and
operations and is based on Parnas’ principle of information hiding
[Parnas 1972] and the principle of inheritance derived from Dahl and
Nygaard [Dahl 1966].

Check your progress

a. ____________allows designers to focus on solving a problem without being
concerned about irrelevant lower level details

b. _____________process of elaboration where the designer provides successively
more detail for each design component

Solution

5.7.4. Design Documentation

The document outlined below can be used as a template for a design
specification.

I. Scope

A. System Objectives

B. Major software requirements

C. Design constraints, limitations

II. Data Design

A. Data objects and resultant data structures

B. File and database structures

1. external file structure

a. logical structure

b. logical record description

a.

b.

 81

c. access method

2. global data

3. file and data cross reference

III. Architectural Design

A. Review of data and control flow

B. Derived program structure

IV. Interface Design

A. Human-machine interface specification

B. Human-machine interface design rules

C. External interface design

1. Interfaces to external data

2. Interfaces to external systems or devices

D. Internal interface design rules

V. Procedural Design

For each module:

A. Processing narrative

B. Interface description

C. Design language (or other) description

D. Modules used

E. Internal data structures

F. Comments/restrictions/limitations

VI. Requirements Cross-Reference

VII. Test Provisions

1. Test guidelines

2. Integration strategy

3. Special considerations

VIII. Special Notes

IX. Appendices

 The numbered sections of the design specification are completed as the
designer refines his or her representation of the software. The overall scope of
the design effort is described in Section I. Section II presents the data design,
describing the various entities that connect data objects to specific files. Section

 82

III, the architectural design, indicates how the program architecture has been
derived from the analysis model. Section IV describes the interface design,
which includes the external and internal program interface and the human-
machine interface. Section V explains the modules used and the processing
narrative that explains the procedural function of each module. Section VI
contains a requirements cross-reference, whose purpose is to establish that all
requirements are satisfied by the software design and to indicate which
modules are critical to the implementation of specific requirements. The first
stage in the development of test documentation is contained in Section VII of
the design document. It includes guidelines for testing and the requirements
and considerations for software packaging. Section IX contains supplementary
data. Algorithm descriptions, alternative procedures, tabular data, excerpts
from other documents and other relevant information are presented as a special
note or as a special appendix. A preliminary operations/installation manual
may be developed and included as an appendix.

5.8. REVIEW QUESTIONS

1. Describe the architectural design of software.

2. Explain and discuss the need of user interface design.

3. What are the requirements of a software design?

5.9. LET US SUM UP

Every intellectual discipline is characterized by fundamental concepts and
specific techniques. Techniques are the manifestations of the concepts as they
apply to particular situations. Techniques come and go with changes in
technology, intellectual dislikes, economic conditions and social concerns. By
definition, fundamental principles remain the same throughout. They provide
the underlying basis for development and evaluation of techniques.
Fundamental concepts of software design include abstraction, structure,
information hiding, modularity, concurrency, verification, and design aesthetics.

5.10. LESSON END ACTIVITIES

i. Use the structured design to produce a design for the systems described
below:

ii. A system to manage patient’s record to keep records of patient’s number of
visits to doctor, his/her progress, medicines prescribed in each visit etc.

5.11. POINTS TO DISCUSSION

i. What is meant by design for reuse? How it differs from Re-Engineering?
Give the steps of reuse model widely use. Can a system ever be completely
decoupled? Justify.

 83

ii. Draw a top-level DFD for the system made up of the following

a. Selling customers request the organization to sell various items on
their behalf. A record of these requests is kept.

b. Buying customers make requests to buy items.

c. A sale is arranged with a buyer if the item requested by the buyer
has been previously put forward for sale by a selling customer.

d. During a sale arrangement

i. An invoice is prepared for the buyer. A record or invoice is
kept.

ii. A notification is sent to the seller whose item was sold the
seller will now hold the item.

iii. A commission is computed and debited to the selling
customer. This commission is subtracted from the amount
sent to the selling custome3r and advice of the commission
is given in the sale advice.

e. The sale is completed when payment is received from the buyer. A
cheques is sent to the seller together with the dispatch request for
items to be sent to the buyer.

 84

5.12. REFERENCES

1. Dijkstra E. W., Structured Programming, Software Engineering Technique,
Report on a Conference, Rome, 1969

2. Yourdon E., Constantine L., Structured Design, Prentice Hall, 1979

3. http://www.sei.cmu.edu/architecture/

 85

LESSON 6: SOFTWARE IMPLEMENTATION

Contents

6.0. Aims and Objectives

6.1. Introduction

6.2. Structured Coding Techniques

6.3. Coding Style

6.4. Standards and Guidelines

6.5. Documentation Guidelines

6.6. Programming Environments

6.7. Type Checking

6.8. Scoping Rules

6.9. Concurrency Mechanisms

6.10. Review Questions

6.11. Let us Sum Up

6.12. Lesson End Activities

6.13. Points for discussion

6.14. References

6.15. Assignments

6.16. Suggested Reading

6.17. Learning Activities

6.18. Keyword

6.0. AIMS AND OBJECTIVES

• To write source code and internal documentation so that conformance of
the code to its specifications can be easily verified.

• To understand psychological and the engineering view of a programming
language characteristics

• To understand the connection between programming languages and the
different areas in software engineering.

• To understand the coding style and efficiency of a programming language.

6.1. INTRODUCTION

The implementation phase of software development is concerned with
translating design specifications into source code. The primary goal of
implementation is to write source code and internal documentation so that

 86

conformance of the code to its specifications can be easily verified, and so that
debugging, testing, and modification are eased. This goal can be achieved by
making the source code as clear and straightforward as possible. Simplicity,
clarity and elegance are the hallmarks of good programs; unexplained
cleverness and complexity are indications of inadequate design and misdirected
thinking.

6.2. STRUCTURED CODING TECHNIQUES

The goal of structured coding is to sequencing control flow through a
computer program so that the execution sequence follows the sequence in
which the code is written. Linear flow of control can be achieved by restricting
the set of allowed program constructs to single entry, single exit formats;
however, strict loyalty to nested, single entry, single exit constructs leads to
questions concerning efficiency, questions about “reasonable” violations of
single entry, single exit, and questions about the proper role of the go to
statements in structured coding.

Programming Language Characteristics

Programming languages are vehicle for communication between humans
and computers. The coding process communication through a programming
language is a human activity.

The Psychological characteristics of a language have an important impact
on the quality of communication. The coding process may also be viewed as
one step in the S/W development project.

The technical characteristics of a language can influence the quality of
design. The technical characteristics can affect both human and S/W
engineering concerns.

A Psychological View

A number of psychological characteristics occur as a result of programming
language design. Although these characteristics are not measurable in any way,
their manifestations in all the programming languages are recognized. The
different characteristics are,

• Uniformity – The indicates the degree to which a language use consistent
notation applies arbitrary restrictions and supports syntactic or semantic
exceptions to the rule.

• Ambiguity – This is a programming language that is perceived by the
programmer. A compiler will always interpret a statement in one way but
the human reader may interpret the statement differently.

• Compactness – A programming language is an indication of the amount
of code-oriented information that must be recalled from the human
memory. The characteristics of human memory have a strong impact on
the manner in which a language is used. Human memory and
recognition may be divided into synthetic and sequential domains.
Synesthetic memory allows remembering and recognizing the things as a
whole. Sequential memory provides a means for recalling the next

 87

element in a sequence. Each of these; memory characteristics affect
programming language characteristics that are called Locality and
linearity.

o Locality- Is the synthetic characteristic of a programming language.
Locality is enhanced when statements may be combines into
blocks when the structured constructs may be implemented
directly, and when design and resultant code are modular and
cohesive.

o Linearity – Is a psychological characteristic that is closely
associated with the concept of maintenance of functional domain.
Extensive branching violates the linearity of processing.

• Tradition- A software engineer with a background in FORTRAN would
have little difficulty learning PASCAL or C. The latter languages have a
tradition established by the former. The constructs are similar, the form
is compatible and a sense of programming language format is maintained.
However if the same S/W engineer is required to earn APL, LISP or Small
talk, tradition would be broken and time on the learning curve would be
longer.

The Psychological characteristics of a programming language have an important
bearing on our ability to learn apply and maintain them.

A Syntactic / Semantic Model

When a programmer applies S/W engineering methods that are
programming language-independent, semantic knowledge is used. Syntactic
knowledge on other hand is language dependent, concentrating on the
characteristics of a specific language.

The semantic knowledge is the more difficult to acquire and also more
intellectually demanding to apply. All S/W engineering steps that precede
coding make heavy use of semantic knowledge. The coding step applies
syntactic knowledge that is arbitrary and instructional. When a new
programming language is learn, the new syntactic information is added to
memory. Potential confusion may occur when the syntax of a new
programming language is similar but not equivalent to the syntax of another
language.

An Engineering View

A S/W engineering view of programming language characteristics focuses on
the needs of specific S/W development project. The characteristics are,

• Ease of design to code translation.

• Compiler efficiency.

• Source code portability.

• Availability of development tools.

• Availability of libraries

 88

• Company policy

• External requirements

• Maintainability.

The ease of design to code translation provides an indication of how closely
a programming language reflects a design representation. A language that
directly implements the structured constructs, sophisticated data structures,
specialized I/O, bit manipulation capabilities and object oriented constructs will
make translation from design to source code much easier.

The quality of the compiler is important for the actual implementation
phase. A good compiler should not only generate efficient code, but also provide
support for debugging (e.g. with clear error messages and run-time checks).
Although fast advances in processor speed and memory density have begun to
satisfy the need for super efficient code may applications still require fast and
low memory requirement programs. Particularly in the area of microcomputers,
many compilers have been integrated in development systems. Here the user-
friendliness of such systems must also be considered.

The source code portability can be as follows:

• The source code may be transported from processor to processor and
compiler to compiler with little or no modification.

• The source code remains unchanged even when its environment changes.

• The source code may be integrated into different software packages with
little or not modification required because of programming language
characteristics.

The availability of development tools can shorten the time required to
generate source code and can improve the quality of code. Many programming
languages may e acquired with a set of tools that include debugging compilers,
source code formatting aids, built-in editing facilities, tools for source code
control, extensive subprogram libraries, browsers, cross-compilers for
microprocessor development, microprocessor capabilities and others.

With modular programming languages, the availability of libraries for
various application domains represents a significant selection criterion. For
example, for practically all FORTRAN compilers, libraries are available with
numerous mathematical functions, and Smalltalk class libraries contain a
multitude of general classes for constructing interactive programs. The
availability of libraries can also be used in C or Modular-2 if the compiler
supports linking routines from different languages. On the other hand, there
are libraries that are available only in compiled form and usable only in
connection with a certain compiler.

Often a particular company policy influences the choice of a programming
language. Frequently the language decision is made not by the implementers,
but by managers that want to use only a single language company-wide for
reasons of uniformity. Such a decision was made by the U.S. Department of
Defense, which mandates the use of ADA for all programming in the military

 89

sector in the U.S (and thus also in most other NATO countries). Such global
decisions have also been made in the area of telecommunications, where many
programmers at distributed locations work over decades on the same product.

Even in-house situations, such as the education of the employees or a
module library built up over years, can force the choice of a certain language. A
company might resist switching to a more modem programming language to
avoid training costs, the purchase of new tools, and the re-implementation of
existing software.

Sometimes external requirements force the use of a given programming
language. Contracts for the European Union increasingly prescribe ADA, and
the field of automation tends to require programs in FORTRAN or C. Such
requirements arise when the client’s interests extend beyond the finished
product in compiled form and the client plans to do maintenance work and
further development in an in-house software department. Then the education
level of the client’s programming team determines the implementation language.

Maintainability of source code is important for all nontrivial software
development efforts. Maintenance cannot be accomplished until S/W is
understood. The earlier elements of the S/W configuration provide a
foundation for understanding, but the source code must be real and modified
according to the changes in design. The self-documenting characteristics of a
language have a strong influence on maintainability.

6.3. CODING STYLE

The readability of a program depends on the programming language used
and on the programming style of the implementer. Writing readable programs is
a creative process. Once the source code has been generated the function of a
module should be apparent without reference to a design specification. The
programming style of the implementer influences the readability of a program
much more than the programming language used. A stylistically well-written
FORTRAN or COBOL program can be more readable than a poorly written
Modula-2 or Smalltlak program. Coding style encompasses a coding philosophy
that stresses simplicity and clarity. The elements of style include the following:

i. Structuredness

ii. Expressiveness

iii. Data declaration

iv. Statement construction

v. Input/Output

vi. Outward form

vii. Efficiency

This refers to both the design and the implementation.

Although efficiency is an important quality attribute, we do not deal with
questions of efficiency here. Only when we understood a problem and its
solution correctly does it make sense to examine efficiency.

 90

6.3.1. Structuredness

� Decomposing a software system with the goal of mastering its complexity
through abstraction and striving for comprehensibility (Structuring in the
large.)

� Selecting appropriate program components in the algorithmic formulation of
subsolutions (Structuring in the small.)

a. Structuring in the large

� Classes and methods for object-oriented decomposition

� Modules and procedures assigned to the modules.

� During implementation the components defined in the design must be
realized in such a way that they are executable on a computer. The
medium for this translation process is the programming language.

� For the implementation of a software system, it is important that the
decomposition defined in the design be expressible in the programming
language; i.e. that all components can be represented in the chosen
language.

b. Structuring in the small

� The understanding and testing of algorithms require that the algorithms
be easy to read.

� Many complexity problems ensure from the freedom taken in the use of
GOTO statements, i.e., from the design of unlimited control flow
structures.

� The fundamental ideal behind structured programming is to use only
control flow structures with one input and one output in the formulation
of algorithms. This leads to a correspondence between the static written
form of an algorithm and its dynamic behavior. What the source code
lists sequentially tends to be executed chronologically. This makes
algorithms comprehensible and easier to verify, modify or extend.

� Every algorithm can be represented by a combination of the control
elements sequence, branch and loop (all of which have one input and one
output) ([Böhm 1996]).

� D-diagrams (named after Dijkstra): Diagrams for algorithm consisting of
only elements sequence, branch and loop.

Note: If we describe algorithms by a combination of these elements, no
GOTO statement is necessary. However, programming without GOTO
statements alone cannot guarantee structuredness. Choosing
inappropriate program components produces poorly structured programs
even if they contain no GOTO statements.

6.3.2. Expressive power (Code Documentation)

� The implementation of software systems encompasses the naming of objects
and the description of actions that manipulate these objects.

 91

� The choice of names becomes particularly important in writing an algorithm.

Recommendation:

• Choose expressive names, even at the price of long identifiers. The
writing effort pays off each time the program must be read, particular
when it is to be corrected and extended long after its implementation. For
local identifiers (where their declaration and use adjoin) shorted names
suffice.

• If you use abbreviations, then use only ones that the reader of the
program can understand without any explanation. Use abbreviations
only in such a way as to be consistent with the context.

• Within software system assign names in only one language (e.g. do not
mix English and Vietnamese).

• Use upper and lower case to distinguish different kinds of identifiers (e.g.,
upper case first letter for data types, classes and modules; lower case for
variables) and to make long names more readable

(e.g. CheckInputValue).

• Use nouns for values, verbs for activities, and adjectives for conditions to
make the meaning of identifiers clear (e.g., width, ReadKey and valid,
respectively).

• Establish your own rules and follow them consistently.

� Good programming style also finds expression in the use of comments: they
contribute to the readability of a program and are thus important program
components. Correct commenting of programs is not easy and requires
experience, creativity and the ability to express the message concisely and
precisely.

The rules for writing comments:

• Every system component (every module and every class) should begin
with a detailed comment that gives the reader information about several
questions regarding the system component:

- What does the component do?

- How (in what context) is the component used?

- Which specialized methods, etc. are use?

- Who is the author?

- When was the component written?

- Which modifications has have been make?

Example:

/* FUZZY SET CLASS: FSET

 FSET.CPP 2.0, 5 Sept. 2007

 92

 Lists operations on fuzzy sets

 Written by Suresh Babu

*/

• Every procedure and method should be provided with a comment that
describes its task (and possibly how it works). This applies particularly
for the interface specifications.

• Explain the meaning of variables with a comment.

• Program components that are responsible for distinct subtasks should be
labeled with comments.

• Statements that are difficult to understand (e.g. in tricky procedures or
program components that exploit features of a specific computer) should
be described in comments so that the reader can easily understand them.

• A software system should contain comments that are as few and as
concise as possible, but as many adequately detailed comments as
necessary.

• Ensure that program modifications not only affect declarations and
statements but also are reflected in updated comments. Incorrect
comments are worse than none at all.

Note: These rules have deliberately been kept general because there are no rules
that apply uniformly to all software systems and every application domain.
Commenting software systems is an art, just like the design and implementation
of software systems.

6.3.3. Data declaration

The style of the data description is established when code is generated. A
number of relatively simple guidelines can be established to make data more
understandable and maintenance simpler. The order of data declarations
should be standardized even if the programming language has no mandatory
requirements. Ordering makes attributes easier to find, expediting testing,
debugging and maintenance. When multiple variable names are declared with
a single statement, an alphabetical ordering of names is used. Similarly,
labeled global data should be ordered alphabetically. If complex data
structures are used in design, the commenting should be used to explain
peculiarities that are present in a programming language implementation.

6.3.4. Statement Construction

The construction of software logical flow is established during design. The
construction of individual statements, is apart of the coding step. Statement
construction should abide by one overriding rule. Each statement should be
simple and direct and code should not be complicated to effect efficiency. Many
programming languages allow multiple statements per line. The spaces saving
aspects of this feature are hardly justified by poor readability that results.
Individual source coder statements can be simplified by,

• Avoiding the use of complicated conditional tests.

 93

• Eliminating tests on negative conditions.

• Avoiding heavy nesting of loops or conditions

• Use of parenthesis to clarify logical or arithmetic expressions.

6.3.5. Input / Output

The style of input and output is established during S/W requirements
analysis and design and not coding Input and output style will vary with the
degree of human interaction. For batch oriented I/O, logical input organization,
meaningful Input/Output error checking, good I/O error recovery and rational
output report formats are desirable characteristics. For Interactive I/O, a
simple guided input scheme, extensive error checking and recovery, human
engineered output, and consistency of I/O format are the primary concerns.

6.3.6. Outward form

� Beyond name selection and commenting, the readability of software systems
also depends on its outward form.

Recommended rules for the outward form of programs:

• For every program component, the declarations (of data types, constants,
variables, etc.) should be distinctly separated form the statement section.

• The declaration sections should have a uniform structure when possible,
e.g. using the following sequence: constant, data types, classes and
modules, methods and procedures.

• The interface description (parameter lists for method and procedures)
should separate input, output and input/output parameters.

• Keep comments and source code distinctly separate.

• The program structure should be emphasized with indentation.

6.3.7. Efficiency

In well engineered systems, there is a natural tendency to use critical
resources efficiently. Processor cycles and memory locations are viewed as
critical resources. Three area of Efficiency should be taken care when a
programming language is developed. They are,

a) Code Efficiency

b) Memory Efficiency

c) Input /Output Efficiency

a. Code Efficiency: The efficiency of source code is directly connected to the
efficiency of algorithms defined during detailed design. However, the coding
style can affect the execution speed and memory requirement. The following
guidelines can be applier when detail design is translated into code.

• Simplify arithmetic and logical expressions before committing to
code.

 94

• Carefully evaluated the nested loops.

• Avoid use of multi-dimensional arrays.

• Avoid the use of pointers and complete lists.

• Don’t mix data types.

b. Memory Efficiency – Memory restrictions in the large machines like
mainframes and workstation are a thing of the past. Low-cost memory provides
a large physical address space and virtual memory management provides
application software with an enormous logical address space. Memory
efficiency for such environments cannot be elated to minimum memory used.
Memory efficiency must take into account the paging characteristics of an
operating system. Maintenance of functional domain through the structured
constructs is an excellent method for reducing paging and thereby increases
efficiency.

c. Input/Output Efficiency – Two classes of I/O should be considered when
efficiency is discussed. They are,

• I/O directed to human (user),

• I/O directed to another device.

Input supplied by a user and output produced for a user is efficient when the
information can be supplier or understood with an economy of intellectual effort.

Efficiency of I/O to other hardware is an extremely complicated topic and the
following guidelines improve I/O efficiency.

• The number of I/O requests should be minimized.

• All I/O should be buffered to reduce communication overhead

• I/O to secondary memory devices should be blocked

• I/O to terminals and printers should recognize features of the device that
could improve quality or speed.

6.4. STANDARDS AND GUIDELINES

Coding standards are specifications for a preferred coding style. Give a
choice of ways to achieve an effect, a preferred way is specified. Coding
standards are often viewed by programmers as mechanisms to constrain and
devalue the programmer’s creative problem solving skills. It is desirable that all
programmers on a software project adopt similar coding styles so that code of
uniform quality is produced. This does not mean that all programmers must
think alike, or that they must slavishly implement all algorithms in exactly the
same manner. Indeed, the individual style of each programmer on a project is
identical even when right adherence to standards of programming style is
observed.

A programming standard might specify items such as

1. Goto Statements will not be used.

 95

2. The nesting depth of program constructs will not exceed five levels.

3. Subroutine length will not exceed 30 lines.

A Guideline rephrases these specifications in the following manner:

1. The use of goto statements should be avoided in normal circumstances.

2. The nesting depth of program constructs should be five or less in normal
circumstances.

3. The number of executable statements in a subprogram should not
exceed 30 in normal circumstances.

4. Departure from normal circumstances requires approval by the project
leader.

6.5. DOCUMENTATION GUIDELINES

Computer software includes the source code for a system and all the
supporting documents generated during analysis, design, implementation,
testing, and maintenance of the system. Internal documentation includes
standards prologues for compellation units and subprograms, the self
documenting aspects of the source code, and the internal comments embedded
in the source code. Program unit notebooks provide mechanisms for organizing
the work activities and documentation efforts of individual programmers. This
section describes some aspects of supporting documents, the use of program
unit notebooks, and some guidelines for internal documentation of source code.

6.5.1. Supporting Documents

Requirements specifications, design documents, test plans, user’s
manuals, installation instructions, and maintenance reports are examples of
supporting documents. These documents are the products that result from
systematic development and maintenance of computer software.

6.5.2. Program Unit Notebooks

A program unit is a unit of source code that is developed and/or
maintained by one person; that person is responsible for the unit. In well-
designed system a program unit is a subprogram or group of subprograms that
provide a well-defined function or form a well define subsystem. A program unit
is also small enough, and modular enough, that it can be thoroughly tested in
isolation by the programmer who develops or modifies it. Program unit
notebooks are used by individual programmers to organize their work activities,
and maintain the documentation for their program units.

6.5.3. Internal Documentation

Internal documentation consists of a standard introduction for each
program unit and compilation unit, the self-documenting aspects of the source
code, and the internal comments embedded in the executable portion of the
code.

Check your progress

 96

i. The implementation phase of software development is concerned with
translating ____________ into ___________.

ii. Programming languages are vehicle for communication between __________
and ___________

iii. The _______________ is important for the actual implementation phase.

iv. ________________ of source code is important for all nontrivial software
development efforts.

v. The coding style refers to both the design and the implementation.

Solutions

i

ii

iii

iv

v

6.6. PROGRAMMING ENVIRONMENTS

• The question of which is the “right” programming language has always been
a favorite topic of discussion in programming circles.

• The choice of a programming language for the implementation of a project
frequently plays an important role.

• In the ideal case, the design should be carried out without any knowledge of
the later implementation language so that it can be implemented in any
language.

Quality criteria for programming languages:

• Modularity

• Documentation value

• Data structures

• Control flow

 97

• Efficiency

• Integrity

• Portability

• Dialog support

• Specialized language elements

� Modularity of a programming language

• Degree to which it support modularization of programs.

• The decomposition of a large program into multiple modules is a
prerequisite for carrying out large software projects.

• Without modularization, division of labor in the implementation becomes
impossible. Monolithic programs become unmanageable: they are
difficult to maintain and document and they impede implementation with
long compile times.

• Languages such as standard Pascal (which does not support modules,
but compare with Turbo Pascal and Modula-2) prove unsuitable for large
projects.

• If a language supports the decomposition of a program into smaller units,
there must also be assurance that the components work together. If a
procedure is invoked from another module, there must be a check of
whether the procedure actually exists and whether it is used correctly (i.e.
whether the number of parameters and their data types are correct).

• Languages may have independent compilation (e.g. C and FORTRAN),
where this check takes place only upon invocation at run time (if at all)

• Alternatively, languages may have separate compilation (e.g. Ada and
Modula-2), where each module has an interface description that provides
the basis for checking its proper use already at compile time.

� Documentation value of a programming language

• Affects the readability and thus the maintainability of programs.

• The importance of the documentation value rises for large programs and
for software that the client continues to develop.

• High documentation value results, among other things, from explicit
interface specifications with separate compilation (e.g. in Ada and
Modula-2). Likewise the use of keywords instead of special characters
(e.g. begin . . . end in Pascal rather than {. . .} in C) has a positive effect
on readability because the greater redundancy gives less cause for
careless errors in reading. Since programs are generally written only once
but read repeatedly, the minimum additional effort in writing pays off no
more so than in the maintenance phase. Likewise the language’s scoping
rules influence the readability of programs.

 98

• Extensive languages with numerous specialized functions (e.g. Ada) are
difficult to grasp in all their details, thus encouraging misinterpretations.
Languages of medium size and complexity (e.g. Pascal and Modula-2)
harbor significantly less such danger.

� Data structures in the programming language

• Primarily when complex data must be processed, the availability of data
structures in the programming language plays an important role.

• Older languages such as FORTRAN, BASIC, and COBOL offer solely the
possibility to combine multiple homogeneous elements in array or
heterogeneous elements in structures.

• Recursive data structures are difficult to implement in these languages.

• Languages like C permit the declaration of pointers to data structures.
This enables data structures of any complexity, and their scope and
structure can change at run time. However, the drawback of these data
structures is that they are open and permit unrestricted access.

• Primarily in large projects with multiple project teams, abstract data
takes on particular meaning. Although abstract data structures can be
emulated in any modular language, due to better readability, preference
should be given to a language with its own elements supporting this
concept.

• Object-oriented languages offer the feature of extensible abstract data
types that permit the realization of complex software systems with
elegance and little effort. For a flexible and extensible solution, object-
oriented languages provide a particularly good option.

� Structuring control flow in the programming language

• Languages like BASIC and FORTRAN include variations of a GOTO
statement, which programmers can employ to create unlimited and
incomprehensible control flow structures. In Pascal and C the use of the
GOTO statement is encumbered because the target must be declared
explicitly. In Eiffel, Modula-2 and Smalltalk there is no GOTO statement
at all, which forces better structuring of the control flow.

• In technical applications additional possibilities for control flow can play
an important role. These include the handling of exceptions and
interrupts as well as parallel processes and their synchronization
mechanisms. Many programming languages (e.g., Ada and Eiffel) support
several of these concepts and thus permit simpler program structures in
certain cases.

Notes: Every deviation from sequential flow is difficult to understand and
thus has a negative effect on readability.

� Efficiency of a programming language

• The efficiency of a programming language is often overrated as a criterion.
For example, the programming language C bears the reputation that it

 99

supports the writing of very efficient programs, while object-oriented
languages are accused of inefficiency. However, there are few cases
where a language is in principle particularly efficient or especially
inefficient.

• Optimizing compilers often generate excellent code that an experienced
Assembler programmer could hardly improve upon. For time-critical
operations, it pays to use a faster machine or a better compiler rather
than a “more efficient” programming language.

� Integrity of a programming language

• The integrity of a programming language flow primarily from its
readability and its mechanisms for type checking (even across module
boundaries).

• Independent of the application domain, therefore, a language with static
typing should be preferred. Static typing means that for each expression
the compiler can determine which type it will have at run time.
Additional integrity risks include type conversions (type casts) and
pointer arithmetic operations, which are routine for programming in C,
for example.

• Run-time checks are also important for integrity, especially during the
development phase. These normally belong in the domain of the compiler.

• Mechanisms for formulating assertions (e.g. in Eiffel) and features for
exception handling (e.g. in Eiffel and Ada) also contribute to the integrity
of a programming language.

� Portability

• Portability can be a significant criterion if a software product is destined
for various hardware platforms. In such a situation it makes sense to
select a standardized language such as Ada or C. However, this alone
does not suffice to ensure portability. For any external modules
belonging to the language also need to be standardized. This is a problem
in the language Modula-2 because various compiler producers offers
different module libraries.

• Beyond standardization, another criterion is the availability of compilers
for the language on different computers. For example, developers of
software for mainframes will find a FORTRAN compiler on practically
every machine.

� Dialog support

• For interactive programs the programming language must also provide
dialog support. For example, FORTRAN and COBOL offer only line-
oriented input and output;

• Highly interactive programs (that react to every key pressed) can thus be
developed only with the help of specialized libraries.

 100

• Some languages like BASIC and LOGO are particularly designed provide
dialog support for the user (and with the programmer), making these
languages better suited for such applications.

• Object-oriented programming languages also prove well suited to the
development of interactive programs, especially with the availability of a
corresponding class library or an application framework.

• For specialized tasks, specialized language elements can be decisive for
the selection of a programming language. For technical applications, for
example, the availability of complex number arithmetic (e.g. in COBOL)
can be important. For mathematical problems, matrix operations (e.g. in
APL) can simplify the task, and translation and character string
operations are elegantly solved in SNOBOL. The lack of such specialized
language elements can be compensated with library modules in modular
languages.

• Object-oriented languages prove particular suited to extending the
language scope.

6.7. TYPE CHECKING

A data type specifies a set of data objects and a set of permitted
operations on objects of that type. Thus, objects of type “integer” comprise an
implementation dependent range of integer values and a set of relational and
arithmetic operators on literals and variable of integer type.

The purpose of data typing is to permit classification of objects according to
intended usage, to allow the language translator to select storage
representations for objects of different types, and, the case of strong type
languages, to detect and prevent operations among object of different types.

Type checking refers to restrictions and limitations imposed on the ways in
which data items can be manipulated by the program. Different languages
improve different restrictions, reflecting the differing philosophies of various
language designers. At least five levels of type checking can be distinguished:

Level 0: Typeless
Level 1: Automatic Type coercion
Level 2: Mixed Mode
Level 3: Pseudo-Strong Type Checking
Level 4: Strong Type checking

6.8. SCOPING RULES

A declaration associates an identifier with a program entity, such as a
variable, a type, a subprogram, a formal parameter, or a record component. The
region of source text over which a declaration has an effect is called the scope of
the declaration. The scoping rules of a programming language dictate the
manner in which identifiers can be defined and used by the programmer.

Scoping rules used in various programming languages include global scope,
FORTRAN scope, nested scope, and restricted scope. Global scope is provided
in BASIC and COBOL. All identifiers are known in all regions of a program. In

 101

FORTRAN, identifiers are known throughout the containing program unit, but
are not known outside the unit unless they appear in a COMMON statement or
as actual parameters in a subprogram invocation.

6.9. CONCURRENCY MECHANISMS

Two or more segments of a program can be executing concurrently if the
effect of executing the segments is independent of the order in which they are
executed. We refer to these program segments as tasks or processes. On
multiple-processor machines, independent code segments can be executed
simultaneously to achieve increased processing efficiency. On a single-
processor machine, the execution of independent code segments can be
interleaved to achieve processing efficiency: One task may be able to execute
while another is waiting for an external event to occur or waiting for completion
of an I/O operation.

The trend towards multiple-processor machines and the increasingly
sophisticated applications of computers has resulted in higher-level language
constructs for specifying concurrent tasks. Two fundamental problems in
concurrent programming are synchronization of tasks so that information can
be transferred between tasks, and prevention of simultaneous updating of data
that are accessible to more than one task. These problems are referred to as
the synchronization problem and the mutual exclusion problem.

There are three fundamental approaches to concurrent programming:

a. shared variables

b. asynchronous message passing,

c. synchronous message passing.

6.10. REVIEW QUESTIONS

1. What are the psychological characteristics that occur as a result of
programming language design?

2. What is a syntactic and Semantic model?

3. Explain the different characteristics in the engineering view on the
software development project.

4. What are the aspects to be followed in choosing a language?

5. How is the programming languages linked with software Engineering?

6. Explain the four areas in programming language fundamentals.

7. What is a good coding style? Explain the element in coding style

8. What are the different areas in which efficiency should be taken care?
Explain.

6.11. LET US SUM UP

 102

In software, detailed design is the implementation of module internals, design of
data structures and algorithms, and coding in a programming language. This
chapter connects the treatment of these issues in the software technology.

6.12. LESSON END ACTIVITIES

i. Give reasons to justify restricting the size of subprograms to between 5
and 25 executable statements.

ii. Give reasons to justify subprograms of less than 5 statements and
subprograms of more than 25 statements.

6.13. POINTS FOR DISCUSSION

i. Give some reasons for using global variables rather than parameters.

ii. Describe several potential problems created by use of global variables.

 103

iii. In what situations would you definitely not use global?

6.14. REFERENCES

1. Horowitz E. and Munsen J.B., An expansive view of Reusable software, IEEE
Trans. Software Eng., SE-10 (5), 1984

2. Shneiderman B., Designing the User Interface, Reading, Addison-Wesley,
1986

3. S.R. Schach, Practical Software Engineering, Irwin-Aksen, Homewood, III,
1992

 103

LESSON 7: SOFTWARE QUALITY ASSURANCE

Contents

7.0. Aim and Objectives

7.1. Introduction

7.2. Quality Assurance

7.3. Walkthrough and Inspections

7.4. Static Analysis

7.5. Symbolic Execution

7.6. Review Questions

7.7. Let us Sum up

7.8. Learning Activities

7.9. Points for Discussion

7.10. References

7.0. AIM AND OBJECTIVES

� To introduce the various aspects involved in delivering quality software.

� To introduce different quality standards and how they affect the software

industry.

7.1. INTRODUCTION

The American Heritage Dictionary defines quality as “a characteristic or

attribute of something”. As an attribute of an item, quality refers to measurable

characteristics when we examine an item based on its measurable

characteristics, two kinds of quality may be encountered: quality of design and

quality of conformance.

In software development, quality of design encompasses requirements,

specifications, and the design of the system. Quality of conformance is an

issue focused primarily on implementation. If the implementation follows the

design and the resulting system meets its requirements and performance goals,

conformance quality is high.

7.2. QUALITY ASSURANCE

Quality Assurance is a “planned and systematic pattern of all actions

necessary to provide adequate confidence that the item or product conforms to

established technical requirements. It also consists of the auditing and

reporting functions of management.

 104

Need for Quality Assurance

� Human beings cannot work in error free manner

� Human beings are blind to their own errors

� Cost of fixing errors increases exponentially with time since their

occurrence

� Systems Software itself is not bug free

� Customers should not find bugs when using software

� Post-release debugging is more expensive

� An organization must learn from its mistakes i.e. not repeat its mistakes

� Appropriate resources need to be allotted e.g. people with right skills

� Error detection activity itself is not totally error free

� A group of people cannot work together without standards, processes,

guidelines, etc.,

The goal of quality assurance is to provide management with the data

necessary to be informed about the product quality, thereby gaining insight and

confidence that product quality is meeting its goals. If the data provided

through quality assurance identify problems, it is management’s responsibility

to address the problems and apply the necessary resources to resolve the

quality issues.

7.2.1. Cost of Quality

Cost of quality refers to the total cost of all efforts to achieve

product/service quality, and includes all work to conformance to requirements,

as well as all work resulting from nonconformance to requirements. Quality

costs may be divided into costs associated with prevention, appraisal, and

failure.

• Prevention costs include quality planning, Formal Technical Reviews,

test equipment, training.

• Appraisal costs include activities to gain insight into product condition

the first time through each process. Examples: in-process and inert-

process inspection, equipment calibration and maintenance, testing.

• Failure costs are costs that would disappear if no defects appeared

before shipping a product to customers. Failure costs may be subdivided

into internal failure costs and external failure costs.

� Internal failure costs include rework, repair, and failure mode

analysis.

� External failure costs include complaint resolution, product return

and replacement, help line support, and warranty work.

 105

7.2.2. Need for Software Quality

• Competitive pressure: Today’s business is extremely competitive,

and the software industry is no exception. Companies must

continuously make and sustain improvements in cost and quality to

remain in business.

• Customer satisfaction: Acquiring a new customer is far more

expensive than retaining a current one. Further, few unsatisfied

customers might complain but the vast majority simply takes their

business elsewhere.

• Management of change: In an industry like software where new tools

and methods arrive at a faster rate than it takes to train staff in their

use, it is especially important that organizations fundamentally

change their management styles and their workforce’s attitudes so as

to effect significant improvements.

• Cost of defects: Defects in software may lead to huge losses to the

customer. In case of mission-critical systems, defects can cause

serious harm to the end-user.

7.2.3. Software quality attributes

Software quality is a broad and important field of software engineering.

Software quality is addressed by standardization bodies:

ISO, ANSI, IEEE, etc.,

Software quality attributes (see Figure 7.1)

Correctness

Dependability

Adequacy

Learnability

Robustness

User Friendliness

Readability

Extensibility

Testability

Maintainability

Efficiency

Portability

Software Quality Attributes

Figure 7.1 Software quality attributes

a. Correctness

The extent to which a program satisfies its specifications and fulfils its user’s

mission and objectives.

 106

b. Reliability

Reliability of a software system derives from

� Correctness, and

� Availability.

The behavior over time for the fulfillment of a given specification depends on

the reliability of the software system.

Reliability of a software system is defined as the probability that this system

fulfills a function (determined by the specifications) for a specified number of

input trials under specified input conditions in a specified time interval

(assuming that hardware and input are free of errors).

A software system can be seen as reliable if this test produces a low error rate

(i.e., the probability that an error will occur in a specified time interval.)

The error rate depends on the frequency of inputs and on the probability that

an individual input will lead to an error.

c. User friendliness:

� Adequacy

� Learnability

� Robustness

Adequacy

Factors for the requirement of Adequacy:

1. The input required of the user should be limited to only what is

necessary. The software system should expect information only if it is

necessary for the functions that the user wishes to carry out. The

software system should enable flexible data input on the part of the user

and should carry out probable checks on the input. In dialog-driven

software systems, we give particular importance in the uniformity, clarity

and simplicity of the dialogs.

2. The performance offered by the software system should be adapted to the

wishes of the user with the consideration given to extensibility; i.e., the

functions should be limited to these in the specification.

3. The results produced by the software system:

The results that a software system delivers should be output in a clear

and well-structured form and be easy to interpret. The software system

should afford the user flexibility with respect to the scope, the degree of

detail, and the form of presentation of the results. Error messages must

be provided in a form that is comprehensible for the user.

 107

Learnability

Learnability of a software system depends on:

� The design of user interfaces

� The clarity and the simplicity of the user instructions (tutorial or user

manual).

The user interface should present information as close to reality as possible

and permit efficient utilization of the software’s failures.

The user manual should be structured clearly and simply and be free of all

dead weight. It should explain to the user what the software system should do,

how the individual functions are activated, what relationships exist between

functions, and which exceptions might arise and how they can be corrected. In

addition, the user manual should serve as a reference that supports the user in

quickly and comfortably finding the correct answers to questions.

Robustness (strong)

Robustness reduces the impact of operational mistakes, erroneous input

data, and hardware errors.

A software system is robust if the consequences of an error in its operation,

in the input, or in the hardware, in relation to a given application, are inversely

proportional to the probability of the occurrence of this error in the given

application.

� Frequent errors (e.g. erroneous commands, typing errors) must be

handled with particular care

� Less frequent errors (e.g. power failure) can be handled more relaxly, but

still must not lead to irreversible consequences.

d. Maintainability

The effort required to locate and fix an error or introduce new features in an

operational program.

The maintainability of a software system depends on its:

� Readability

� Extensibility

� Testability

Readability

Readability of a software system depends on its:

� Form of representation

� Programming style

 108

� Consistency

� Readability of the implementation programming languages

� Structuredness of the system

� Quality of the documentation

� Tools available for inspection

Extensibility

Extensibility allows required modifications at the appropriate locations to be

made without undesirable side effects.

Extensibility of a software system depends on its:

� Structuredness (modularity) of the software system

� Possibilities that the implementation language provides for this purpose

� Readability (to find the appropriate location) of the code

� Availability of comprehensible program documentation

Testability

Testability: suitability for allowing the programmer to follow program execution

(run-time behavior under given conditions) and for debugging.

The testability of a software system depends on its:

� Modularity

� Structuredness

Modular, well-structured programs prove more suitable for systematic, stepwise

testing than monolithic, unstructured programs.

Testing tools and the possibility of formulating consistency conditions

(assertions) in the source code reduce the testing effort and provide important

prerequisites for the extensive, systematic testing of all system components.

e. Efficiency

Efficiency: ability of a software system to fulfill its purpose with the best

possible utilization of all necessary resources (time, storage, transmission

channels, and peripherals).

f. Portability

Portability: the ease with which a software system can be adapted to run on

computers other than the one for which it was designed.

The portability of a software system depends on:

� Degree of hardware independence

 109

� Implementation language

� Extent of exploitation of specialized system functions

� Hardware properties

� Structuredness: System-dependent elements are collected in easily

interchangeable program components.

A software system can be said to be portable if the effort required for porting it

proves significantly less than the effort necessary for a new implementation.

7.2.4. The importance of quality criteria

The quality requirements encompass all levels of software production.

Poor quality in intermediate products always proves detrimental to the quality
of the final product.

• Quality attributes that affect the end product

• Quality attributes that affect intermediate products

Quality of end products [Bons 1982]:

• Quality attributes that affect their application: These influence the
suitability of the product for its intended application (correctness,
reliability and user friendliness).

• Quality attributes related to their maintenance: These affect the
suitability of the product for functional modification and extensibility
(readability, extensibility and testability).

• Quality attributes that influence their portability: These affect the
suitability of the product for porting to another environment (portability
and testability).

Quality attributes of intermediate products:

• Quality attributes that affect the transformation: These affect the
suitability of an intermediate product for immediate transformation to a
subsequent (high-quality) product (correctness, readability and
testability).

• Quality attributes that affect the quality of the end product: These
directly influence the quality of the end product (correctness, reliability,
adequacy, readability, extensibility, testability, efficiency and portability).

 110

7.2.5 The effects of quality criteria on each other

 Effect on

C
o
rr
e
c
tn
e
s
s

D
e
p
e
n
d
a
b
il
it
y

A
d
e
q
u
a
c
y

L
e
a
rn

a
b
il
it
y

R
o
b
u
s
tn
e
s
s

R
e
a
d
a
b
il
it
y

M
o
d
if
ia
b
il
it
y
/
e
x
te
n
s
ib
il
it

y

T
e
s
ta
b
il
it
y

E
ff
ic
ie
n
c
y

P
o
rt
a
b
il
it
y

 Correctness + 0 0 + 0 0 0 0 0

 Dependability 0 0 0 + 0 0 0 - 0

 Adequacy 0 0 + 0 0 0 0 + -

 Learnability 0 0 0 0 0 0 0 - 0

 Robustness 0 + + 0 0 0 + - 0

 Readability + + 0 0 + + + - +

Modifiability/extensibilit
y

+ + 0 0 + 0 + - +

 Testability + + 0 0 + 0 + - +

 Efficiency - - + - - - - - -

 Portability 0 0 - 0 0 0 + 0 -

Table 1.1 Mutual effects between quality criteria (“+”: positive effect, “-“:
negative effect, “0”: no effect)

7.2.6. Software Quality Assurance

• Refers to umbrella activities concerned with ensuing quality

• Covers quality activities associated with all line and staff functions.

• Scope not restricted only to fault detection and correction.

 Attributes

 111

• Oriented towards both prevention and excellence.

• Involves taking care in design, production and servicing

• Assurance comes from:

o Defining appropriate standards, procedures, guidelines, tools, and

techniques.

o Providing people with right skills, adequate supervision and

guidance.

Software Quality Assurance is defined as:

• Conformance to explicitly stated functional and performance

requirements,

• Conformance to explicitly documented development standards, and

• Conformance to implicit characteristics that are expected of all

professionally developed software.

The above definition serves to emphasize three important points:

1. Software requirements are the foundation from which quality is

measured. Lack of conformance to requirements is lack of quality.

2. Specified standards define a set of development criteria that guide the

manner in which software is engineered. If the criteria are not

followed, lack of quality will almost surely result.

3. There is a set of implicit requirements that often goes unmentioned. If

software conforms to its explicit requirements but fails to meet

implicit requirements, software quality is suspect.

Software Quality Assurance (SQA) Activities

The SQA group has responsibility for quality assurance planning, record

keeping, analysis, and reporting. They assist the software engineering team in

achieving a high quality end product.

The activities performed by an independent SQA group are:

1. Prepare a SQA Plan for a project

The plan is developed during project planning and is reviewed by

all interested parties. The plan identifies:

• Evaluations to be performed

• Audits and reviews to be performed

• Standards that are applicable to the project

• Procedures for error reporting

 112

• Documents to be produced by the SQA group

• Amount of feedback provided to software project team

2. Participates in the development of the project’s software process

description.

3. Reviews software engineering activities to verify compliance with the

defined software process.

4. Audits designated software work products to verify compliance with

those defined as part of the software process.

5. Ensures that deviations in software work and work products are

documented and handled according to a documented procedure.

6. Records any noncompliance and reports to senior management.

7. Coordinates the control and management of change.

8. Helps to collect and analyze software metrics.

7.3. WALKTHROUGHS AND INSPECTIONS

The walkthrough is a procedure that is commonly used to check the

correctness of models produced by structured systems analysis, although its

techniques are applicable to other design methodologies. Such checking has

always been necessary in system life cycle. Walkthroughs differ from earlier

methods in that they recommended a specific checking procedure and

walkthrough team structure.

A Walkthrough team usually consists of a review and three to five reviewers.

On one-or two-person project it may not be cost-effective to assemble a review

team; however, the walkthrough technique can be beneficial with only one or

two reviewers. In this case a walkthrough formalizes the processes of

explaining your work to a colleague. The team must check that the model:

� Meets system objectives;

� Is a correct representation of the system;

� Has no omissions or ambiguities;

� Will do the job it is supposed to do; and

� Is easy to understand.

7.3.1. Software Reviews

Software reviews are a filter for the software engineering process.

Reviews are applied at various points during software development to uncover

errors, which can be removed. So Software reviews help to eliminate defects in

the software work products that occur as a result of improper analysis, design,

 113

and coding. Defect implies a quality problem that is discovered after the

software has been shipped to end-users and so needs to be eliminated.

Any review employs the diversity of a group of people to

1. identify needed improvements in the product

2. conform those parts in which improvement is neither desired nor

needed

3. achieve work of uniform, or at least predictable, quality to make

technical work more manageable.

Reviews can either be formal or informal. Formal technical reviews are more

effective from a quality assurance standpoint and effective means for improving

software quality.

7.3.2. Formal Technical Reviews

A Formal Technical Review (FTR) is a software quality assurance activity that

is performed by software engineers. The objectives of the FTR are:

1. To uncover errors in function, logic or implementation

2. To verify the software under review meets requirements

3. To ensure Software is as per predefined standards

4. To achieve uniform development of software

5. To make projects more manageable

The FTR is actually a class of reviews that include that include walkthroughs,

inspections, round-robin reviews, and other small group technical assessment

of software. Each FTR is conducted as a meeting, and will be successful only if

it is properly planned, controlled and attended.

7.3.3. The Review Meeting

Every review meeting should focus on a specific part of the overall software. It

should be:

1. Attended by 3-5 people

2. Should be well planned, but not require more than two hours of work per

person

3. Of less than two hours duration

The focus of the FTR is on a work product – a component of the

software. The individual who has developed the work product is the Producer.

The Producer informs the Project Leader that the work product is complete, and

a review is required. The Project Leader contacts a Review Leader who evaluates

the work product for readiness, generates copies, and distributes them to two

 114

or three reviewers for advance preparation. Concurrently, the Review Leader

also reviews the work product and establishes an agenda for the review meeting.

The Review Leader, all reviewers and the Producer attend the Review

Meeting. The producer presents the work product and the reviewers raise issues

if any. One of the reviewers takes on the role of recorder. The recorder records

all important issues raised during the review, like problems and errors.

After the review, all attendees of the FTR must decide whether to

1. Accept the work product without modification,

2. Reject the work product due to severe errors, or

3. Accept the work product provisionally.

Once the decision is made, all FTR attendees complete a Sign-off,

indicating their participation in the review, and their concurrence with the

review team’s findings.

During the FTR, it is important to summarize the issues and produce a

Review Issues List, and a Review Summery Report. A Review Summery Report

becomes the part of the Project Historical Record, and contains information

about what was reviewed, who reviewed, and the findings and conclusions of

the review. This report is distributed to the Project Leader, and other interested

parties. The Review Issues List serves to identify problem areas within the

product, and to serve as an action item checklist that guides the Producer, as

corrections are made. It is important to establish a follow-up procedure to

ensure that items on the issues list have been properly corrected.

A minimum set of guidelines for FTR is:

1. Review the product, not the Producer.

2. Set an agenda, and maintain it.

3. Limit arguments.

4. List out problem areas, but don’t attempt to solve every problem

noted.

5. Take written notes.

6. Limit the number of participants, and insist on advance preparation.

7. Develop a checklist for each work product that is likely to be reviewed.

8. Allocate resources and time schedules for FTRs.

9. Conduct meaningful training for all reviewers.

10. Review your earlier reviews.

7.3.4. Inspections

 115

Inspections, like walkthroughs, can be used throughout the software life

cycle to asses and improve the quality of the various work products. Inspection

teams consist of one to four members (producer, inspector, moderator, reader)

who are trained for their tasks. The producer, whose product is under review,

inspector who evaluates the product, and the moderator who controls the

review process. There is also a reader, who may guide inspectors through the

product. Inspections are conducted in a similar manner to walkthrough, but

more structure is imposed on the sessions, and each participant has a definite

role to play. Each of the roles in an inspection team would have well-defined

responsibilities within the inspection team. Fagan suggests a procedure made

up of five steps, namely:

1. Overview, where the producers of the work explain their work to inspectors.

2. Preparation, where the inspectors prepare the work and the associated

documentation for inspection.

3. Inspection, which is meeting moderated by the moderator and guided by a

reader who goes through the work with the inspectors.

4. Rework, which is any work required by the producers to correct any

deficiencies.

5. Follow-up, where a check is made to ensure that any deficiencies have been

corrected.

The important thing here is that the inspections are formal and have a

report that must be acted on. It is also important that any recommendations

made during inspections be acted upon and followed up to ensure that any

deficiencies are corrected.

7.4. STATIC ANALYSIS

Static analysis is a technique for assessing the structural characteristics

of source code, design specifications, or any notational representation that

conforms to well define syntactic rules. The present discussion is restricted to

static analysis of source code

Static program analysis

� Static program analysis seeks to detect errors without direct execution of

the test object.

� The activities involved in static testing concern syntactic, structural and

semantic analysis of the test object.

� The goal is to localize, as early as possible, error-prone parts of the test

object.

� The most important activities of static program analysis are:

• Code inspection

 116

• Complexity analysis

• Structural analysis

• Data-flow analysis

a. Code inspection

� Code inspection is a useful technique for localizing design and

implementation errors. Many errors prove easy to find if the author would

only read the program carefully enough.

� The idea behind code inspection is to have the author of a program

discuss it step by step with other software engineers.

� Structure of the four person team:

1. An experienced software engineer who is not involved in the project to

serve as moderator

2. The designer of the test object

3. The programmer responsible for the implementation

4. The person responsible for testing

The moderator notes every detected error and the inspection continues.

� The task of the inspection team is to detect, not to correct, errors. Only on

completion of the inspection do the designer and the implementor begin

their correction work.

b. Complexity analysis

� The goal of complexity analysis is to establish metrics for the complexity of

a program These metrics include complexity measures for modules,

nesting depths for loops, lengths of procedures and modules, import and

use frequencies for modules, and the complexity of interfaces for

procedures and methods.

� The results of complexity analysis permit statements about the quality of

a software product (within certain limits) and localization of error-prone

positions in the software system.

� Complexity is difficult to evaluate objectively; a program that a

programmer perceives as simple might be viewed as complex by someone

else.

c. Structural analysis

� The goal of structural analysis is to uncover structural anomalies of a test

object.

c. Data-flow analysis

� Data-flow analysis is intended to help discover data-flow anomalies.

 117

� Data-flow analysis provides information about whether a data object has

a value before its use and whether a data object is used after an

assignment.

� Data-flow analysis applies to both the body of a test object and the

interfaces between test objects.

7.5. SYMBOLIC EXECUTION

Symbolic execution is a validation technique in which the input variables

of a program unit are assigned symbolic values rather than literal values. A

program is analyzed by transmitting the symbolic values of the inputs into the

operands in expressions. The resulting symbolic expressions are simplified at

each step in the computations so that all intermediate computations and

decisions are always expressed in terms of the symbolic inputs. For instance,

evaluation of an assignment statement results in association of a symbolic

expression with the left-hand variable. When that variable is used in

subsequent expressions, the current symbolic value is used. In this manner,

all computations and decisions are expressed as symbolic values of the inputs.

Check your progress

i. _______________ encompasses requirements, specifications, and the design of
the system.

ii. _______________ is an issue focused primarily on implementation.

iii. _________________consists of the auditing and reporting functions of
management.

iv. ________________ refers to the total cost of all efforts to achieve
product/service quality,

v. ______________ reduces the impact of operational mistakes, erroneous input
data, and hardware errors.

Solutions

I

Ii

Iii

iv

v

 118

7.6. REVIEW QUESTIONS

1. Explain software reliability in software quality assurance.

2. What are the SQA activities? Explain them in detail.

3. Explain in detail the formal technical review.

4. What are the Review guidelines and review checklist?

5. Explain the three S/W Quality metrics.

6. What are the formal approaches to SQA? Explain.

7. Explain a SQA approach

7.7. LET US SUM UP

This lesson gave a brief introduction to the kinds of activities that make up

quality assurance. It stressed the importance of processes that are objective in

order to find modeling errors in an organized way. This chapter outlined one

such process, walkthroughs.

The discipline of software assurance that

1) defines the requirements for software controlled system fault/failure

detection, isolation, and recovery;

2) reviews the software development processes and products for software

error prevention and/ or controlled change to reduced functionality

states; and

3) Defines the process for measuring and analyzing defects and defines/

derives the reliability and maintainability factors.

Software quality is important, if,

(1) explicitly define what is meant when you say 'software quality',

(2) create a set of activities that will help ensure that every software

engineering work product exhibits high quality,

(3) perform quality assurance activities on every software project,

(4) use metrics to develop strategies for improving your software process,

and as a consequence, improving the quality of the end product.

7.8. LEARNING ACTIVITIES

Conduct a structured walkthrough session on some segment of a software

project of your choice. Include a moderator and a recording secretary plus two

or three people who have knowledge off and interest in the project. Provide

participants

 119

7.9. POINTS FOR DISCUSSION

a) Compose a design inspection checklist for a software project of your
choice. Apply checklist to the design specifications.

b) Design a code inspection checklist for a real-time software product

c) Design a code inspection checklist for a scientific application program.

 120

d) Design a code inspection checklist for a data processing application
program.

7.10. REFERENCES

1. Richard Fairley, “Software Engineering Concepts”, Tata McGraw-Hill, 1997.

2. Roger S.Pressman, Software engineering- A practitioner’s Approach,
McGraw-Hill International Edition, 5th edition, 2001.

3. http://www.quality.org

 121

LESSON 8: SOFTWARE TESTING

Contents

8.0. Aims and Objectives

8.1. Introduction

8.2. Levels of Testing

8.3. Unit Testing

8.4. System Testing

8.5. Acceptance test

8.6. White Box Testing

8.7. Black Box Testing

8.8. Testing for Specialized Environments

8.9. Formal Verification

8.10. Debugging

8.11. Review questions

8.12. Let us Sum up

8.13. Lesson End Activities

8.14. Points for Discussion

8.15. References

8.0. AIMS AND OBJECTIVES

• To understand the types of testing done on software

• To understand the different approaches to testing

• To do testing effectively by designing proper test cases

8.1. INTRODUCTION

In a software development project, errors can be injected at any stage

during the development. Techniques are available for detecting and eliminating

errors that originate in each phase. However, some requirement errors and

design errors are likely to remain undetected. Such errors will ultimately be

reflected in the code. Since code is the only product that can be executed and

whose actual behavior can be observed, testing the code forms an important

part of the software development activity.

 122

8.1.1. Software testing process

Software testing is the process used to help identify the correctness,

completeness, security and quality of developed computer software. With that in

mind, testing can never completely establish the correctness of arbitrary

computer software. In computability theory, a field of computer science and

neat mathematical proof concludes that it is impossible to solve the halting

problem, the question of whether an arbitrary computer program will enter an

infinite loop, or halt and produce output. In other words, testing is nothing but

criticism or comparison that is comparing the actual value with expected one.

Testing presents an interesting variance for the software engineer. The engineer

creates a series a series of test cases that are intended to demolish the software

that has been built. In fact, testing is the only activity in the software

engineering process that could be viewed as “destructive” rather than

“constructive”. Testing performs a very critical role for quality assurance and for

ensuring the reliability of the software.

Glen Meyers [1979] states a number of rules that can serve well as testing

objectives:

1. Testing is the process of executing a program with the intent of finding an

error.

2. A good test case is one that has a high probability of finding an as-yet

undiscovered error.

3. A successful test is one that uncovers an as-yet undiscovered error.

The common viewpoint of testing is that a successful test is one in which no

errors are found. But from the above rules, it can be inferred that a successful

test is one that systematically uncovers different classes of errors and that too

with a minimum time and effort. The more the errors detected, the more

successful is the test.

What testing can do?

1. It can uncover errors in the software

2. It can demonstrate that the software behaves according to the specification

3. It can show that the performance requirements have been met

4. It can prove to be a good indication of software reliability and software

quality

What testing cannot do?

Testing cannot show the absence of defects, it can only show that software

errors are present.

Davis [1995] suggests a set of testing principles as given below:

 123

1. All tests should be traceable to the customer requirements.

From the customer’s point of view, when the program fails to meet

requirements, it is considered to be a severe defect. Tests are to be

designed to detect such defects.

2. Tests should be planned long before testing begins.

It is commonly misunderstood that testing begins only after coding is

complete. Testing is to be carried out all throughout the software

development life cycle. Test planning can begin as soon as the

requirements model is complete.

3. The Pareto principle applies to software testing.

The Pareto principle implies that 80% of all errors uncovered during

testing will likely be traceable to 20% of all program modules. Hence the

idea is that those 20% suspect modules are to be isolated and thoroughly

tested.

4. Testing should begin “in the small” and progress towards testing “in the

large”.

Testing activity normally begins with the testing of individual program

modules and then progresses towards integrated clusters (group) of

modules, and ultimately the entire system.

5. Exhaustive testing is not possible.

It is highly impossible to test all possible paths in a program because

even for a moderately sized program, the number of path permutations is

exceptionally large. However in practice, it is possible to adequately cover

program logic.

6. To be most effective, testing should be conducted by an independent third

party.

By “most effective”, we mean testing that has the highest probability of

finding errors. In general, the software engineer who created the system

is not the best person to conduct all tests for the software and hence an

independent third party is the obvious choice.

Kaner, Falk, and Nguyen [1993] suggest the following attributes of a good test:

1. A good test has a high probability of finding an error.

2. A good test is not redundant (unnecessary).

Since testing time and resources are limited, there is no point in

conducting a test that has the same purpose as another test. For

example, a library routine is developed to find the factorial of a given

number. To test the routine in order to uncover errors, the test input

 124

may be chosen to be 3. If the routine produces the correct result, then it

is better to test for the input 50, a larger input when compared to 3,

instead of testing with the input 4, because if the routine behaved

correctly for the input 3 there is every possibility that it will also behave

correctly for the input 4.

3. A good test should be the best of kind.

In a group of tests that have a similar intent, the test that has the

highest likelihood of uncovering a whole class of errors should be used.

This is because the testing time and resources are limited.

4. A good test should be neither too simple nor too complex.

Too simple tests may fail to uncover errors. At the same time, it is

possible to combine a series of tests into one complex test, which may

mask some errors. Hence each test should be executed separately.

In carrying out testing we will wish to address some or all of the following

questions:

• How is functional validity tested?

• What classes of input will make good test cases?

• Is the system particularly sensitive to certain input values?

• How are the boundaries of a data class isolated?

• What data rates and data volume can the system tolerate?

• What effect will specific combinations of data have on system operation?

• Which activities are necessary for the systematic testing of a software

system?

• What is to be tested?

� System specifications,

� Individual modules,

� Connections between modules,

� Integration of the modules in the overall system

� Acceptance of the software product.

8.1.2. Dynamic testing

� For dynamic testing the test objects are executed or simulated.

� Dynamic testing is an imperative process in the software life cycle. Every

procedure, every module and class, every subsystem and the overall

system must be tested dynamically, even if static tests and program

verifications have been carried out.

 125

� The activities for dynamic testing include:

• Preparation of the test object for error localization

• Availability of a test environment

• Selection of appropriate test cases and data

• Test execution and evaluation

There are many approaches to software testing, but effective testing of

complex products is essentially a process of investigation, not merely a matter

of creating and following rote procedure. One definition of testing is "the process

of questioning a product in order to evaluate it", where the "questions" are

things the tester tries to do with the product, and the product answers with its

behavior in reaction to the questioning of the tester. Although most of the

intellectual processes of testing are nearly identical to that of review or

inspection, the word testing is imply as a consequence to mean the dynamic

analysis of the product—putting the product through its paces. The quality of

the application can, and normally does, vary widely from system to system but

some of the common quality attributes include reliability, stability, portability,

maintainability and usability.

Software testing answers questions that development testing and code reviews

can’t.

� Does it really work as expected?

� Does it meet the users’ requirements?

� Is it what the users expect?

� Do the users like it?

� Is it compatible with our other systems?

� How does it perform?

� How does it scale when more users are added?

� Which areas need more work?

� Is it ready for release?

What can we do with the answers to these questions?

� Save time and money by identifying defects early

� Avoid or reduce development downtime

� Provide better customer service by building a better application

� Know that we’ve satisfied our users’ requirements

� Build a list of desired modifications and enhancements for later versions

 126

� Identify and catalog reusable modules and components

� Identify areas where programmers and developers need training

8.2. LEVELS OF TESTING

The different levels of testing are used to validate the software at different

levels of the development process.

Fig. 8.1 shows the different testing phases and the corresponding development

phases that it validates. Unit Testing is done to validate the code written and is

usually done by the author of the code. Integration testing is done to validate

the design strategies of the software. System testing is done to ensure that all

the functional and non functional requirements of the software are met.

Acceptance testing is then done by the customer to ensure that the software

works well according to customer specification.

8.3. UNIT TESTING

Unit testing is essentially for verification of the code produced during the

coding phase, and hence the goal is to test the internal logic of the modules.

The unit test is normally white box oriented, and the step can be conducted in

parallel for multiple modules. Unit testing is simplified when a module with

high cohesion is designed. When only one function is addressed by a module,

the number of test cases is reduced and errors can easily be uncovered.

Code

Design

Requirement

Analysis

System Engineering

System

Testing

Acceptance

Testing

Fig. 8.1. Levels of testing

Unit Test

Integrated Testing

 127

8.3.1. Unit Test Considerations

The tests that occur as part of unit testing are listed below:

• Interface – The module interface is tested to ensure that information

properly enters into and out of the program unit under test. If data does

not enter or exit properly, then all other tests are unresolved.

• Local data structures – The local data structure is examined to ensure

that data stored temporarily maintains its integrity during all steps in an

algorithm’s execution.

• Boundary conditions – Boundary conditions are tested to ensure that

the module operates properly at boundaries established to limit or

restrict processing.

• Independent paths – All independent paths through the control

structure are exercised to ensure that all statements in a module have

been executed at least once.

• Error handling paths – All error handling paths are tested.

Figure 8.2. Unit Test Environment

8.3.2. Unit Test Procedures

Because a module is not a standalone program, driver and/or stub

software must be developed for each unit test. A driver is nothing more than a

“main program” that accepts test case data, passes such data to the module to

be tested, and prints relevant results. Stubs serve to replace modules that are

subordinate to the module to be tested. A stub or “dummy subprogram” uses

the subordinate module’s interface, may do minimal data manipulation, prints

 128

verification of entry, and returns. Drivers and stubs represent overhead.

Because, both are software modules that must be developed to aid in testing

but not delivered with the final software product.

8.3.3. Integration Testing

Integration testing involves checking for errors when units are put

together as described in the design specifications. While integrating, software

can be thought of as a system consisting of several levels. A unit that makes a

function call to another unit is considered to be one level above it. Fig. 8.3

There are several approaches for integration:

a. Bottom-Up

The bottom-up approach integrates the units at the lowest level (bottom

level) first, and then the units at the next level above it an so on till the topmost

level is integrated. When integrating, each interface is tested to see if it works

properly together.

Method

� First those operations are tested that require no other program

components; then their integration to a module is tested.

� After the module test the integration of multiple (tested) modules to a

subsystem is tested, until finally the integration of the subsystems, i.e.,

the overall system can be tested.

The advantages

� The advantages of bottom-up testing prove to be the drawbacks of top-

down testing (and vice versa).

� The bottom-up test method is solid and proven. The objects to be tested

are known in full detail. It is often simpler to define relevant test cases

and test data.

Unit

Unit

Unit

Unit

Unit

Unit

Unit

Fig. 8.3. Functional Unit

 129

� The bottom-up approach is psychologically more satisfying because the

tester can be certain that the foundations for the test objects have been

tested in full detail.

The drawbacks

� The characteristics of the finished product are only known after the

completion of all implementation and testing, which means that design

errors in the upper levels are detected very late.

� Testing individual levels also cause high costs for providing a suitable test

environment.

b. Top-Down

Top-Down integration starts from the units at the top level first and

works downwards integrating the units at a lower level. While integrating if a

unit in the lower level is not available a replica of the lower level unit is created

which imitates its behavior.

Method

� The control module is implemented and tested first.

� Imported modules are represented by substitute modules.

� Surrogates have the same interfaces as the imported modules and simulate

their input/output behavior.

� After the test of the control module, all other modules of the software

systems are tested in the same way; i.e., their operations are represented

by surrogate procedures until the development has progressed enough to

allow implementation and testing of the operations.

� The test advances stepwise with the implementation. Implementation and

phases merge, and the integration test of subsystems become unnecessary.

The advantages

� Design errors are detected as early as possible, saving development time

and costs because corrections in the module design can be made before

their implementation.

� The characteristics of a software system are evident from the start, which

enables a simple test of the development state and the acceptance by the

user.

� The software system can be tested thoroughly from the start with test

cases without providing (expensive) test environments.

 130

The drawbacks

� Strict top-down testing proves extremely difficult because designing

usable surrogate objects can prove very complicated, especially for

complex operations.

� Errors in lower hierarchy levels are hard to localize.

c. Sandwich

Sandwich integration is an attempt to combine the advantages of both

the above approaches. A “target” layer is identified somewhere in between and

the integration converges on the layer using a top-down approach above it and

a bottom-up approach below it. Identifying the target layers must be done by

people with good experience in similar projects or else it might leads to serious

delays.

d. Big-Bang

A different and somewhat simplistic approach is the big-bang approach,

which consists of putting all unit-tested modules together and testing them in

one go. Chances are that it will not work! This is not a very feasible approach

as it will be very difficult to identify interfacing issues.

8.4. SYSTEM TESTING

System testing is testing conducted on a complete, integrated system to

evaluate the system's compliance with its specified requirements. Software is

only one element of a larger computer-based system. The software developed is

ultimately incorporated with other system elements such as new hardware,

information etc., and a series of system integration and validation tests are

conducted. These tests are not conducted by the software developer alone.

System testing is actually a series of different tests whose primary purpose is to

fully exercise the computer-based system. Although each test has a different

purpose, all work to verify that all system elements have been properly

integrated and perform allocated functions.

System testing falls within the scope of Black box testing, and as such,

should require no knowledge of the inner design of the code or logic.

8.4.1. Alpha and Beta Test

Alpha testing and Beta testing are sub-categories of System testing. If

software is developed as a product (example: Microsoft Word) which is intended

to be used by many end-users, it is not practical to perform formal acceptance

tests with each end-user. In this situation most software products are tested

using the process called alpha and beta testing to allow the end-user to find

defects.

The Alpha test is conducted in the developer’s environment by the end-

users. The environment might be simulated, with the developer and the

 131

typical end-user present for the testing. The end-user uses the software

and records the errors and problems. Alpha test is conducted in a

controlled environment.

The Beta test is conducted in the end-user’s environment. The

developer is not present for the beta testing. The beta testing is always

in the real-world environment which is not controlled by the developer.

The end-user records the problems and reports it back to the developer

at intervals. Based on the results of the beta testing the software is

made ready for the final release to the intended customer base.

As a rule, System testing takes, as its input, all of the "integrated"

software components that have successfully passed Integration testing and also

the software system itself integrated with any applicable hardware system(s).

The purpose of Integration testing is to detect any inconsistencies between the

software units that are integrated together called assemblages or between any

of the assemblages and hardware. System testing is more of a limiting type of

testing, where it seeks to detect both defects within the "inter-assemblages" and

also the system as a whole.

8.4.2. Finger Pointing

A classic system testing problem is “finger pointing”. This occurs when

an error is uncovered, and each system element developer blames the other for

the problem. The software engineer should anticipate potential interfacing

problems and do the following:

1) Design error-handling paths that test all information coming from

other elements of the system

2) Conduct a series of tests that simulate bad data or other potential

errors at the software interface

3) Record the results of tests to use as “evidence” if finger pointing does

occur

4) Participate in planning and design of system tests to ensure that

software is adequately tested.

8.4.3. Types of System Tests

The types of system tests for software-based systems are:

a. Recovery Testing

b. Security Testing

c. Stress testing

d. Sensitivity Testing

e. Performance Testing

 132

a. Recovery Testing

Recovery testing is a system test that forces the software to fail in a

variety of ways and verifies that recovery is properly performed. If recovery is

automatically performed by the system itself, then re-initialization, check

pointing mechanisms, data recovery, and restart are each evaluated for

correctness. If recovery requires human intervention, the mean time to repair is

evaluated to determine whether it is within acceptable limits.

b. Security Testing

Security testing attempts to verify that protection mechanisms built into

a system will in fact protect it from improper penetration. Penetration spans a

broad range of activities: hackers who attempt to penetrate systems for sport;

unhappy employees who attempt to penetrate for revenge; and dishonest

individuals who attempt to penetrate for illegal personal gain.

c. Stress Testing

Stress tests are designed to tackle programs with abnormal situations.

Stress testing executes a system in a manner that demands resources in

abnormal quantity, frequency, or volume. For example,

1) Special tests may be designed that generate 10 interrupts per second,

when one or two is the average rate

2) Input data rates may be increased by an order of magnitude to determine

how input functions will respond

3) Test cases that require maximum memory or other resources may be

executed

4) Test cases that may cause thrashing in a virtual operating system may

be designed

5) Test cases that may cause excessive hunting for disk resident data may

be created.

d. Sensitivity Testing

A variation of stress testing is a technique called sensitivity testing. In

some situations a very small range of data contained within the bounds of valid

data for a program may cause extreme and even erroneous processing or

profound performance degradation. Sensitivity testing attempts to uncover data

combinations within valid input classes that may cause instability or improper

processing.

e. Performance Testing

Performance testing is designed to test run time performance (speed and

response time) of software within the context of an integrated system. It occurs

throughout all steps in the testing process. Performance tests are often coupled

with stress testing and often require both hardware and software

 133

instrumentation. External instrumentation can monitor execution intervals, log

events as they occur, and sample machine states on a regular basis.

Performance testing can be categorized into the following:

� Load Testing is conducted to check whether the system is capable of

handling an anticipated load. Here, Load refers to the number of

concurrent user accessing the system. Load testing is used to determine

whether the system is capable of handling various activities performed

concurrently by different users.

� Endurance testing deals with the reliability of the system. This type of

testing is conducted for a longer duration to find out the health of the

system in terms of its consistency. Endurance testing is conducted on

either a normal load, or stress load. However, the duration of the test is

long.

� Stress testing helps to identify the number of users the system can

handle at a time before breaking down or degrading severely. Stress

testing goes one step beyond the load testing and identifies the system’s

capability to handle the peak load.

� Spike testing is conducted to stress the system suddenly for a short

duration. This testing ensures whether the system will be a stable and

responsive under an unexpected rise in load.

8.4.4. Regression Testing

This is an important aspect of testing-ensuring that when an error is

fixed in a system, the new version of the system does not fail any test that the

older version passed. Regression testing consists of running the corrected

system against tests which the program had already passed successfully. This

is to ensure that in the process of modifying the existing system, the original

functionality of the system was not disturbed. This is particularly important in

maintenance project, where the likelihood of making changes can inadvertently

affect the program’s behavior.

Maintenance projects require enhancement or updating of the existing

system; enhancements are introduction of new features to the software and

might be released in different versions. Whenever a version is released,

regression testing should be done on the system to ensure that the existing

features have not been disturbed.

8.5. ACCEPTANCE TEST

 Acceptance testing is the process of testing the entire system, with the

completed software as part of it. This is done to ensure that all the

requirements that the customer specified are met. Acceptance testing (done

after System testing) is similar to system testing but administered by the

customer to test if the system follow to the agreed upon requirements.

 134

� The development of a software product ends with the inspection

(acceptance test) by the user.

� At inspection the software system is tested with real data under real

conditions of use.

� The goal of the inspection is to uncover all errors that arose from such

sources as misunderstandings in consultations between users and

software developers, poor estimates of application-specific data quantities,

and unrealistic assumptions about the real environment of the software

system.

Any engineered product can be tested in one of two ways:

1. Black Box Testing

2. White Box Testing

1. White Box Testing: White box testing is done to ensure that internal

operation performs according to the specification and all internal

components have been adequately exercised.

2. Black Box Testing: Each product has been designed to perform certain

specified functions. Tests can be conducted to demonstrate that each

function is fully operational.

8.6. WHITE BOX TESTING

White box testing, clear box testing, glass box testing or structural

testing is used in computer programming, software engineering and software

testing to check that the outputs of a program, given certain inputs, conform to

the structural specification of the program.

The term white box (or glass box) indicates that testing is done with

knowledge of the code used to execute certain functionality. For this reason, a

programmer is usually required to perform white box tests. Often, multiple

programmers will write tests based on certain code, so as to gain varying

perspectives on possible outcomes.

A complementary technique, black box testing or functional testing, performs

testing based on previously understood requirements (or understood

functionality), without knowledge of how the code executes.

� White-box testing is one of the most important test methods. For a limited

number of program paths, which usually suffices in practice, the test

permits correct manipulation of the data structures and examination of

the input/output behavior of test objects.

� In white-box testing the test activities involve not only checking the

input/output behavior, but also examination of the inner structure of the

test object.

 135

� The goal is to determine, for every possible path through the test object,

the behavior of the test object in relation to the input data.

� Test cases are selected on the basis of knowledge of the control flow

structure of the test object.

� The selection of test cases must consider the following:

� Every module and function of the test object must be invoked at least

once

� Every branch must be taken at least once

� As many paths as possible must be followed

� It is important to assure that every branch is actually taken. It does not

suffice to merely assure that every statement is executed because errors

in binary branches might not be found because not all branches were

tested.

� It is important to consider that, even for well-structured programs, in

practice it remains impossible to test all possible paths, i.e., all possible

statement sequences of a program ([Pressman 1987], see Figure 9.4)

Figure 9.4. Control flowchart: for 10 iterations there are almost
one million paths

It uses the control structure of the procedural design to derive test cases that

can

1. guarantee that all independent paths within a module have been

exercised at least once

2. exercise all logical decisions on their true and false sides

 136

3. execute all loops at their boundaries and within their operational

bounds

4. exercise internal data structures to assure their validity

The various White Box Testing techniques are:

a. Basis Path Testing

b. Condition Testing

c. Data flow Testing

d. Loop Testing

a. Basis Path Testing

The basis path method enables the test case designer to derive a logical

complexity measure of a procedural design and use this measure as a guide for

defining a basis set of execution paths. Test cases derived to exercise the basis

set are guaranteed to execute every statement in the program at least one time

during testing. The steps to be followed in deriving test cases using this method

are:

1. Using the design or code as a foundation, draw a corresponding flow

graph.

2. Determine the cyclomatic complexity, V(G), of the resultant flow graph,

using the formula

V(G) = E – N + 2,

where E is the number of edges, and N is the number of nodes in the

flowgraph.

3. Determine a basis set of linearly independent paths. The value of V(G)

provides the number of linearly independent paths through the

program control structure.

4. Prepare test cases that will force execution of each path in the basis

set.

5. Execute each test case and compare it with the expected results.

b. Condition Testing

Condition Testing is a test case design method that exercises the logical

conditions contained in a program module. Conditions can be either simple or

compound in nature.

• A simple condition is a Boolean variable or a relational expression,

possibly preceded with a NOT operator.

 137

A relational expression takes the form E1 <relational operator> E2,

where E1 and E2 are arithmetic expressions and (relational operator) is

one of the following: “<”, “≤”, “>”, “≥”, “=”, “≠”.

• A compound condition is composed of two simple conditions, Boolean

operators, and parentheses.

A condition without relational expressions is referred to as a Boolean

expression.

A Boolean expression returns a value of true or false, based on a comparison.

The various Boolean operators used for comparing Boolean variables are:

OR (“|”), AND (“&”), and NOT (“¬”).

The possible types of components in a condition include the following: a

Boolean operator, a Boolean variable, a pair of Boolean parentheses, a

relational operator, or an arithmetic expression. If a condition is incorrect, then

at least one component of the condition is incorrect. Thus, types of errors in a

condition include the following:

1. Boolean operator error

Example: (a<b) &&& (a>c)

2. Boolean parenthesis error

Example: ((a<b) && (a<c)

3. Relational operator error

Example: a<b c

4. Arithmetic expression error

Example: a+b*

The following are the various condition testing strategies:

1. Branch Testing

For a compound condition C, the true and false branches of C and

every simple condition in C need to be executed at least once.

2. Domain Testing

For a Boolean expression with n variables, all of 2n possible tests

are required (n>0). This strategy can detect Boolean operator,

variable, and parenthesis errors, but is practical only if n is small.

3. Branch and Relational Operator (BRO) Testing

This technique guarantees the detection of branch and relational

operator errors in a condition provided that all Boolean variables

and relational operators in the condition occur only once and have

no common variables.

 138

c. Data Flow Testing

The data flow testing method selects test paths of a program according

to the locations of definitions and uses of variables in the program. In a

program, if we assume a statement with S as its statement number,

 DEF(S) = { X | statement S contains a definition of X }

 USE(S) = { X | statement S contains a use of X }

The definition of variable X at statement S is said to be live at statement

S′ if there exists a path from statement S to statement S′ that does not contain

any other definition of X.

A definition-use chain (or DU chain) of variable X is of the form [X, S,

S′], where S, S′ are statement numbers, X is in DEF(S) and USE(S′), and the

definition of X in statement S is live at statement S′.

A simple data flow testing strategy, known as DU testing strategy, is to

require that every DU chain be covered at least once. Data flow testing strategies

are useful for selecting test paths of a program containing nested if and loop

statements. However the disadvantage is that it does not guarantee the

coverage of all branches of a program.

d. Loop Testing

Loop Testing focuses exclusively on the validity of loop constructs. The

four different classes of loop constructs are described below:

1. Simple Loops

The following set of tests should be applied to simple loops, where n is

the maximum number of allowable passes through the loop.

i. Skip the loop entirely.

ii. Only one pass through the loop.

iii. Two passes through the loop.

iv. m passes through the loop where m < n.

v. n – 1, n, n + 1 passes through the loop.

2. Nested Loops

i. Start at the innermost loop. Set all other loops to minimum

values.

ii. Conduct simple loop tests for the innermost loop while holding

the outer loops at their minimum iteration parameter values.

Add other tests for out-of-range or excluded values.

 139

iii. Work outward, conducting tests for the next loop, but keeping

all other outer loops at minimum values and other nested

loops to typical values.

iv. Continue until all loops have been tested.

3. Concatenated Loops

Concatenated loops can be tested using the approach defined above

for simple loops if each of the loops is independent of the other. When

the loops are not independent, the approach applied to nested loops

is recommended.

4. Unstructured Loops

Whenever possible this class of loops should be redesigned in to

structured loops. Then one of the above mentioned approaches can

be used.

8.6.1. Limitations

There are some software defects in the white box testing. They are:

a. Logic errors and incorrect assumptions are inversely proportional to

probability that a program path will be executed. Errors enter into our

work when we design and implement functions, conditions, or controls

that are out of the mainstream.

b. It is believed that a logical path is not likely to be executed when it may

be executed on a regular basis. The assumptions about the flow of

control and data may lead to make design errors that are uncovered only

once when testing commences.

c. Typographical errors are random. When a program is translated into

programming language source code, it is likely that some typing errors

will occur. Many will be uncovered by syntax checking mechanisms, but

others will go undetected until testing begins.

8.7. BLACK BOX TESTING

 Black box testing is based on an analysis of the specification of a piece of

software without reference to its internal workings. The term black box indicates

that the internal implementation of the program being executed is not examined

by the tester. For this reason black box testing is not normally carried out by

the programmer. In most real-world engineering firms, one group does design

work while a separate group does the testing.

Black Box testing also known as Functional Testing focuses on the

functional requirements of the software. It allows the tester to derive a set of

input conditions that will fully exercise all functional requirements of a

program. The structure of a program (i.e., code) is not considered for the design

 140

of test cases. Instead the test cases for the entire system are designed from the

requirements specification document for the system.

Black Box Testing attempts to find errors in the following categories:

1. Incorrect or missing functions

2. Interface errors

3. Errors in data structures or external data base access

4. Performance errors

5. Initialization and termination errors

By applying black box testing techniques, we derive a set of test cases that

satisfy the following criteria:

1. Test cases that reduce, by a count that is greater than one, the number

of additional test cases that must be designed to achieve reasonable

testing, and

2. Test cases that tell us something about the presence or absence of

classes of errors, rather than errors associated only with the specific test

at hand.

The various Black Box Testing techniques are as follows:

a. Graph Based Testing

b. Equivalence Partitioning

c. Boundary Value Analysis

d. Comparison Testing

a. Graph Based Testing

The steps involved in graph based testing are as follows:

1. Identify the objects that are modeled in the software and the relationships

that connect these objects.

2. Create a graph – a collection of nodes that represent objects; links that

represent the relationships between objects; node weights that describe the

properties of a node like a specific data value or state behavior, and link

weights that describe some characteristic of a link.

3. Devise a series of tests that will cover the graph so that each object and

relationship is exercised and errors are uncovered.

b. Equivalence Partitioning

A technique in black box testing is equivalence partitioning.

Equivalence partitioning is designed to minimize the number of test cases by

dividing tests in such a way that the system is expected to act the same way for

 141

all tests of each equivalence partition. Test inputs would be selected from each

partition.

Equivalence partitions are designed so that every possible input belongs to one

and only one equivalence partition.

Equivalence classes may be defined according to the following guidelines:

1. If an input condition specifies a range, one valid and two invalid

equivalence classes are defined.

2. If an input condition requires a specific value, one valid and two

invalid equivalence classes are defined.

3. If an input condition specifies a member of a set, one valid and one

invalid equivalence class are defined.

4. If an input condition is Boolean, one valid and one invalid class are

defined.

Disadvantages

• Doesn't test every input

• No guidelines for choosing inputs

• Heuristic based

• very limited focus

c. Boundary value analysis (BVA)

Boundary value analysis is a technique of black box testing in which

input values at the boundaries of the input domain are tested. It has been

widely recognized that input values at the extreme ends of, and just outside of,

input domains tend to cause errors in system functionality. BVA is a test case

design technique that leads to a selection of test cases that exercise bounding

values. This technique complements the equivalence partitioning method. It has

been observed that most programs that work correctly for a set of values in an

equivalence class, fail on some special values. These values often lie on the

boundary of the equivalence class. Test cases that have values on the

boundaries of equivalence classes are therefore likely to be “high yield” test

cases. Selecting such test cases is the aim of BVA.

Boundary value analysis is an excellent way to catch common user input errors

which can interrupt proper program functionality.

Boundary value analysis complements the technique of equivalence

partitioning.

Guidelines for BVA area as follows:

 142

1. If an input condition specifies a range bounded by values a and b,

test cases should be designed with values a and b, just above and

just below a and b, respectively.

2. If an input condition specifies a number of values, test cases should

be developed that exercise the maximum and minimum numbers.

Values just above and below maximum and minimum are also tested.

3. Guidelines 1 and 2 are applied to output conditions.

4. If internal program data structures have prescribed boundaries, be

certain to design a test case to exercise the data structure at its

boundary.

Some of the advantages of boundary value analysis are:

• Very good at exposing potential user interface/user input problems

• Very clear guidelines on determining test cases

• Very small set of test cases generated

Disadvantages to boundary value analysis:

• Does not test all possible inputs

• Does not test dependencies between combinations of inputs

d. Comparison Testing

Using lessons learned from redundant systems, researchers have

suggested that independent versions of software be developed for critical

applications, even when only a single version will be used in the delivered

computer based system. These independent versions form the basis of black

box testing technique called comparison testing or back-to-back testing.

When multiple implementations of the same specification have been

produced, test cases designed using other black box techniques are provided as

input t o each version of the software. If the output from each version is the

same, it is assumed that all implementations are correct. If the output is

different, each of the applications is investigated to determine if a defect in one

or more versions is more responsible for the difference. Mostly comparison is

done using automated tools.

Disadvantages

Comparison testing is not foolproof. If the specification from which all

versions have been developed is itself is in error, then all versions will likely

reflect the error. Also, if each of the independent versions produces identical

but incorrect results, then comparison testing will fail to detect the error.

 143

8.7.1. Smoke testing

A sub-set of the black box test is the smoke test. A smoke test is a

cursory examination of all of the basic components of a software system to

ensure that they work. Typically, smoke testing is conducted immediately after

a software build is made. The term comes from electrical engineering, where in

order to test electronic equipment, power is applied and the tester ensures that

the product does not spark or smoke.

8.8. TESTING FOR SPECIALIZED ENVIRONMENTS

As computer software has become more complex, the need for specialized

testing approaches has also grown.

a. Testing GUIs

Although the creation of the Graphical User Interfaces (GUIs) has become less

time consuming, the design and execution of test cases is more difficult. The

following questions can serve as a guideline for creating a series of generic tests

for GUIs:

For Windows:

Questions relating to the opening, resizing, moving, scrolling, and closing

of windows, functionality of windows, multitasking, etc. are some of the

few questions.

For pull-down menus and mouse operations:

Questions relating to the menu bar, menu functions, pull down menus,

mouse operations with regard to menus, etc. need to be considered while

designing tests.

Data entry:

Questions relating to modes of data entry, proper echoing of data entry,

recognition of valid/invalid data, input messages, etc. may be used in

designing test cases.

b. Testing of Client/Server Architectures

The distributed nature of client/server environments, the performance

issues associated with transaction processing, the complexities of network

communication, the need to service multiple clients from a centralized database,

and the coordination requirements imposed on the server all combine to make

testing of Client/Server architectures more difficult.

 c. Testing Documentation & Help Facilities

 144

Documentation testing should be a meaningful part of every software test

plan as errors in documentation are more frustrating. Documentation testing

can be approached in two phases:

1. First Phase - a formal technical review examines the document for

editorial clarity.

2. Second Phase - live test, uses the documentation in conjunction with the

use of the actual program.

Live test for documentation can be approached using black-box testing

methods. For instance, Graph based testing can be used to describe the use of

the program, Equivalence partitioning and Boundary Value Analysis can be

used to define various classes of input and associated interactions. Several

questions relating to the documentation, terminology used, guidance provided

for understanding error messages and easy troubleshooting, etc. have to be

answered. This can be accomplished by having an independent third party test

the documentation in the context of program usage.

d. Testing for Real Time Systems

In many real-time applications, in addition to designing white and black

box test cases, the test case designer must also consider event handling, the

timing of data, and the parallelism of the tasks that handle the data. Most real-

time systems process interrupts. Therefore, testing the handling of these

Boolean events is essential and is done using the State Transition Diagram and

the Control Specification.

An overall four-step strategy for design of test cases for real-time systems

is as follows:

1. Task Testing: White box and Black box tests are designed and

executed for each task. Each task is executed independently during

these tests. Task testing uncovers errors in logic and function, but will

not uncover timing or behavioral errors.

2. Behavioral Testing: Events such as interrupts, control signals, data

are categorized for testing. Each of these events is tested individually

and the behavior of the executable system is examined to detect errors

that occur as a consequence of processing associated with these events.

The behavior of the system model and the executable software can be

compared for conformance. Once each class of events has been tested,

events are presented to the system in a random order and with random

frequency. The behavior of the software is examined to detect behavior

errors.

3. Intertask Testing: Asynchronous tasks that are known to

communicate with one another are tested with different data rates and

processing load to determine if inter-task synchronization errors will

 145

occur. Also, tasks that communicate via a message queue or data store

are tested to uncover errors in the sizing of data storage areas.

4. System Testing: Software and hardware are integrated, and a full range

of system tests is conducted so as to uncover errors at

hardware/software interface.

8.9. FORMAL VERIFICATION

Software testing is very often referred to as software verification and

validation (V & V). Verification refers to the activities which ensure that

software correctly implements a specific function. Formal verification involves

the use of rigorous, mathematical techniques to demonstrate that computer

programs have certain desired properties. The methods of input-output

declaration, weakest preconditions, and structural induction are three

commonly used techniques.

Two important questions:

• Whether the chosen approach will actually lead to the required solution?

• Whether the already developed components are correct, i.e., whether they

fulfill the specifications?

� Ideally we would like to be able to prove at any time that for every

imaginable input the algorithms included in the design and their

interplay will deliver the expected results according to the specification.

� Since today's large software systems permit the complete description of

neither the input set nor the anticipated result set (due to combinatorial

explosion), such systems can no longer be completely tested. Thus efforts

must be made to achieve as much clarity as possible already in the design

phase about the correctness of the solution.

� Proof of correctness cannot be handled without formal and mathematical

tools

� The use of a verification procedure forces the software engineer to

reproduce all design decisions and thus also helps in finding logical

errors. Verification is an extremely useful technique for early detection of

design errors and also complements the design documentation.

Verification itself can be fallible; however, it cannot replace testing of a

software product.

� Verification can be used successfully to prove the correctness of short and

simple algorithms. For the production of larger software systems, the

difficulties rise so sharply that it should be clear that verification fails as

a practical test aid.

8.9.1 Mathematical program verification

 146

� If programming language semantics are formally defined, it is possible to

consider a program as a mathematical object.

� Using mathematical techniques, it is possible to demonstrate the

correspondence between a program and a formal specification of that

program.

� Program is proved to be correct with respect to its specification.

� Formal verification may reduce testing costs; it cannot replace testing as

a means of system validation.

� Techniques for proving program correctness and axiomatic approaches

The basis of the axiomatic approach

� Assume that there are a number of points in a program where the

software engineer can provide assertions concerning program variables

and their relationships. At each of these points, the assertions should be

invariably true. Say the points in the program are P(1), P(2),...P(n). The

associated assertions are a(l), a(2),...,a(n). Assertion a(1) must be an

assertion about the input of the program and a(n) an assertion about the

program output.

� To prove that the program statements between points P(i) and P(i+l) are

correct, it must be demonstrated that the application of the program

statements separating these points causes assertion a(i) to be

transformed to assertion a(i+l).

� Given that the initial assertion is true before program execution and the

final assertion is true after execution, verification is carried out for

adjacent program statements.

8.10. DEBUGGING

Debugging, a narrow view of software testing, is performed heavily to find

out design defects by the programmer. The limitation of human nature makes it

almost impossible to make a moderately complex program correct the first time.

Finding the problems and get them fixed, is the purpose of debugging in

programming phase.

Debugging is a methodical process of finding and reducing the number

of bugs, or defects, in a computer program or a piece of electronic hardware

thus making it behave as expected. Debugging tends to be harder when various

subsystems are tightly coupled, as changes in one may cause bugs to emerge in

another.

 147

Although each debugging experience is unique, certain general principles can

be applied in debugging. This section particularly addresses debugging software,

although many of these principles can also be applied to debugging hardware.

The basic steps in debugging are:

• Recognize that a bug exists

• Isolate the source of the bug

• Identify the cause of the bug

• Determine a fix for the bug

• Apply the fix and test it

8.10.1. The Debugging Process

The debugging process begins with the execution of the test case. Results

are assessed and a lack of correspondence between expected and actual result

is encountered. In many cases, the non-corresponding data is found to be a

symptom of an underlying cause as yet hidden. The debugging process

attempts to match symptom with cause, thereby leading to error correction.

Characteristics of bugs ([Cheung 1990])

1. The symptom and the cause may be geographically remote. That is, the

symptom may appear in one part of a program, while the cause may

actually be located at a site that is far removed. Highly coupled program

structures exacerbate this situation.

2. The symptom may disappear (temporarily) when another error is

corrected.

Debugging

Suspected

causes

Identified

causes
Corrections

Execution of cases

Regression

Tests

Results
Test

caes

Additional

test

Fig. 8.5 Debugging Process

 148

3. The symptom may actually be caused by non-errors (e.g., round-off

inaccuracies).

4. The symptom may be caused by human error that is not easily traced.

5. The symptom may be a result of timing problems, rather than processing

problems.

6. It may be difficult to accurately reproduce input conditions (e.g., a real-

time application in which input ordering is indeterminate).

7. The symptom may be intermittent. This is particularly common in

embedded systems that couple hardware and software.

8. The symptom may be due to causes that are distributed across a number

of tasks running on different processors.

The debugging process will always have one of two outcomes:

(1) The cause will be found, corrected, or removed, or

(2) The cause will not be found.

 In general, three categories for debugging approaches are proposed:

� Brute Force Approach

� Backtracking Approach

� Cause Elimination Approach

Each of the debugging approaches can be supplemented with debugging tools

such as debugging compliers, dynamic debugging aids, automatic test case

generators, memory dumps, and cross-reference maps.

a. Brute Force Approach

The brute force category of debugging is the most common method for

isolating the cause of an error. This method is generally the least efficient and is

used when everything else fails. A philosophy such as “let the computer find the

error” is used in this approach. Memory dumps are taken, run-time traces are

invoked, and the program is loaded with “write” statements, with the hope that

from the mass of information produced, we will find a clue that can lead us to

the cause of an error.

b. Back Tracking Approach

Debugging by backtracking involves working backward in the source

code from the point where the error was observed in an attempt to identify the

exact point where the error occurred. It may be necessary to run additional test

cases in order to collect more information. This approach can be used

successfully in small programs. The disadvantage with this approach is that if

the program is too large, then the potential backward paths may become

unmanageably large.

 149

c. Cause Elimination Approach

Cause elimination approach is manifested by induction or deduction. This

approach proceeds as follows:

1. List possible causes for the observed failure by organizing the data

related to the error occurrence.

2. Devise a “cause hypothesis”.

3. Prove or disprove the hypothesis using the data.

4. Implement the appropriate corrections.

5. Verify the correction. Rerun the failure case to be sure that the fix

corrects the observed symptom.

Check your Progress

i. ____________is the process used to help identify the correctness,
completeness, security and quality of developed computer software.

ii. In other words, testing is nothing but __________ or _________ that is
comparing the actual value with expected one.

iii. _____________ is done to validate the code written and is usually done by the
author of the code.

iv. ________ and __________ are sub-categories of System testing.
v. White box testing is also called as _________ and __________

Solutions

I

Ii

Iii

Iv

V

8.11. REVIEW QUESTIONS

1. What are the Testing objectives, rules in S/W testing fundamentals?

2. Explain the testing information flow.

3. What are the stages available in testing process?

4. Describe art of debugging in software testing strategies.

5. Write short notes on: a. Data flow testing b. Integration testing.

 150

6. What is the objective of unit testing?

7. Explain Control structure testing, Dataflow testing Loop testing and
Block box testing.

8. What is Equivalent partitioning?

9. Explain the boundary value analysis method?

10. Write a short notes on,

a. Comparison testing

b. Testing for real-time testing

11. Differentiate Verification and Validation?

12. What are the different structural testing methods? Explain.

8.12. LET US SUM UP

The purpose of testing is not only to prove that the code performs in accordance

with the design specifications, but to prove that it does not fail when subjected

to undefined inputs.

There are several types of testing. Unit testing tests one module of code for

correct inputs, outputs, and functionality. System testing tests all the modules

of a software system together. User acceptance testing is a form of systems

testing to see if not only the system works, but it meets the requirements of the

business user. Regression testing is testing performed after a system change

to make sure that all system features are still present after the change.

Debugging is the process of isolating and correcting the causes of known errors.

Debugging occurs as a consequence of successful testing. That is, when a test

case uncovers an error, debugging is the process that results in the removal of

the error. During debugging, we might encounter errors that range from mildly

annoying (e.g., an incorrect output format) to catastrophic (e.g., causing serious

economic or physical damage). As the consequences of an error increase, the

amount of pressure to find the cause also increases. Success at debugging

requires highly developed problem solving skills.

8.13. LESSON END ACTIVITIES

i. State few salient characteristics of modern testing tools.

ii. If you could only select three test case design methods to apply
during unit testing, what could they be and why?

8.14. POINTS FOR DISCUSSION

i. Differentiate Static Testing and Dynamic Testing.

 151

8.15. REFERENCES

1. Hetzel W., The Complete Guide to Software Testing, QED Information
Sciences, 1984.

2. Myers G., The Art of Software Testing, Wiley, 1979

3. A.J. Albrecht and J.E. Gaffney, Jr, Software Function, Source Lines of
Code and Development Effort Prediction: A Software Science Validation,
IEEE Trans. Software Engineering. Vol. 9. 6:639-648, (1983)

 151

Lesson 9: Software Maintenance

Contents

9.0. Aims and Objectives

9.1. Introduction

9.2. Enhancing Maintainability during Development

9.3. Managerial Aspects of Software Maintenance

9.4. Software Configuration Management

9.5. Source Code Metrics

9.6. Other Maintenance Tools and Techniques

9.7. Review Questions

9.8. Let us Sum up

9.9. Lesson End Activities

9.10. Points for Discussion

9.11. References

9.0. AIMS AND OBJECTIVE

• To identify those software development tasks, products, and activities that

contribute directly to a maintainable software product

• To describe the software maintenance process

• To identify factors that influence software maintenance resource estimation

• To justify some of the design guidelines introduced earlier in terms of their

contributions to building a maintainable software product.

9.1. INTRODUCTION

Maintenance is the challenge of system development. It holds the software

industry captivity, tying up programming resources; Analysts and programmers

spend far more time maintaining programs than they do writing them.

Maintenance accounts for 50-80% of total system development and the

percentage continues to rise as more software is produced. Maintenance is

defined by describing four activities that are undertaken after a program is

released for use:

• Corrective Maintenance

• Adaptive Maintenance

• Perfective Maintenance or Enhancement

 152

• Preventive Maintenance or Reengineering

Only about 20% of all maintenance work is spent “fixing mistakes”. The

remaining 80% is spent adapting existing systems to changes in their external

environment, making enhancements requested by users, and reengineering an

application for future use.

1. Perfective maintenance means those changes demanded by the user or

the system programmer which improve the system in some way without

changing its functionality.

2. Adaptive maintenance is maintenance due to changes in the environment

of the program.

3. Corrective maintenance is the correction of undiscovered system errors.

4. The techniques involved in maintaining a software system are essentially

those used in building the system in the first place.

• New requirements must be formulated and validated,

• Components of the system must be redesigned and implemented

• Part or all of the system must be tested.

The techniques used in these activities are the same as those used during

development.

5. There are no special technical tricks which should be applied to software

maintenance.

Important

6. Large organizations devoted about 50% of their total programming effort

to maintaining existing systems.

• The program maintainer pays attention to the principles of information

hiding. For a long-lived system, it is quite possible that a set of changes

to a system may themselves have to be maintained. It is a characteristic

of any change that the original program structure is corrupted. The

greater the corruption, the less understandable the program becomes

and the more difficult it is to change. The program modifier should try,

as far as possible, to minimize effects on the program structure.

• One of the problems of managing maintenance is that maintenance has a

poor image among software engineers. It is seen as a less skilled process

than program development and, in many organizations, maintenance is

allocated to inexperienced staff. The end result of this negative image is

that maintenance costs are probably increased because staffs allocated

to the task are less skilled and experienced than those involved in system

design.

 153

Software Maintenance Characteristics

In order to understand the characteristics of S/W maintenance, the

following three points are considered.

1. Structured and unstructured maintenance- The actual flow of events that

occur as a result of a maintenance request is illustrated in the figure below. If

the only available element of a S/W configuration is source code. Maintenance

activity begins with the evaluation of the code, often complicated by poor

internal documentation. The delicate characteristics such as program

structure, global data structure, system interfaces, and performance and design

constraints are difficult to handle and are often misinterpreted. The amounts of

changes that are made to the code are difficult to assess. The Regression tests

are impossible to conduct since no record of testing exists.

Suppose, a complete configuration exists, the maintenance task begins

with an evaluation of the design documentation. Important structural,

performance and interface characteristics of the S/W are determined. The

impact of required modifications or the corrections are assessed, and an

approach is planned. The design is modified and reviewed. Now source code is

developed, the regression tests are conducted using information contained in

the test specification and the S/W is released again.

2. Maintenance Cost – The cost of S/W maintenance has increased steadily

during the past several years. One intangible cost of S/W maintenance is the

development opportunity that is postponed or lost since the available resources

must be channeled to maintenance tasks. Other intangible costs include:

1. Customer dissatisfaction when legitimate request for repair or modification

cannot be addressed in a timely manner.

2. Reduction in overall S/W quality as a result of changes that introduce latent

errors in the maintained S/W.

3. The upheaval caused during development efforts when the staff must be

pulled to work on a maintenance task.

The effort expended on maintenance may be divided into productive activities

and wheel spinning activity. The following expression provides a model of

maintenance effort.

 M = p + Ke(c-d)

Where M = total effort expended on maintenance

 P = Productive effort

 K = An empirical constant

 C= The measure of complexity that can be attributed to a lack of good

design and documentation.

 154

d= The measure of the degree of familiarity with S/W

3. Problems Most of the problems associated with S/W maintenance can be

traced to deficiencies in the way was planned and developed. A lack of control

and discipline in S/W engineering development activities nearly always

translates into problems during S/W maintenance. The following are the

problems that can be associated with S/W maintenance.

� It is often difficult or impossible to trace the evolution of the S/W through

many versions or releases. Changes are not adequately documented.

� It is often difficult or impossible to trace the process through which S/W

was created.

� It is difficult to understand someone else program.

� Someone else is often not around to explain. Mobility among S/W personnel

is high. We cannot rely upon a personal explanation of S/W by the

developer when maintenance is required.

� The documentation does not exist. The recognition that S/W must be

documented is a first step, but documentation must be understandable and

consistent with source code to be of any value.

� Most of the S/W is not designed for change. Unless, a design method

accommodates change through concepts such as functional independence

or object classes, modifications to S/W are difficult and error prone.

� The Maintenance has not been viewed as a glamorous work. Much of this

perception comes from the high frustration level associated with

maintenance work.

9.2. ENHANCING MAINTAINABILITY DURING DEVELOPMENT

Maintainability can be defined as the ease with which S/W can be

understood, corrected, adapted and with which S/W can be understood,

corrected, adapted and enhanced. Many activities performed during software

development enhance the maintainability of a software product. Some of these

Activities are:

• Analysis activities

o Develop standards and guidelines

o Set milestones for the supporting documents

o Specify quality assurance procedures

o Identify likely product enhancements

o Determine resources required for maintenance

o Estimate maintenance cost

• Architectural Design Activities

 155

o Emphasize clarity and modularity as design criteria

o Design to ease likely enhancements

o Use standardized notations to document data flow, functions,
structure, and interconnections

o Observe the principles of information hiding, data abstraction, and
top-down hierarchical decomposition.

• Detailed Design Activities

o Use standardized notations to specify algorithms, data structures,
and procedure interface specifications.

o Specify side effects and exception handling for each routine

o Provide cross-reference directories

• Implementation Activities

o Use single entry, single exist constructs

o Use standard indentation of constructs

o Use simple, clear coding style

o Use symbolic constants to parameterize routines

o Provide margins on resources

o Provide standard documentation prologues for each routine

o Follow standard internal commenting guidelines.

• Other Activities

o Develop a maintenance guide

o Develop a test suite

o Provide test suite documentation

9.3. MANAGERIAL ASPECTS OF SOFTWARE MAINTENANCE

Successful software maintenance, like all software engineering activities,

requires a combination of managerial skills and technical expertise. In this

section, we discuss some of the managerial concerns of software maintenance.

Technical issues in software maintenance are also discussed in the following

sections.

One of the most important aspects of software maintenance involves

tracking and control of maintenance activities. Maintenance activity for a

software product usually occurs in response to a change request filed by a user

of the product. The biggest challenge in Software Maintenance is managing the

maintenance staff.

 156

Five steps for improving the motivation of maintenance staff

• Couple software objectives to organizational goals.

• Couple software maintenance rewards to organizational performance.

• Integrate software maintenance personnel into operational teams.

• Create a flexible perfective maintenance budget.

• Involve maintenance staff early in the software process during standards

preparation reviews and test preparation.

9.4. SOFTWARE CONFIGURATION MANAGEMENT

9.4.1. Need for Software Configuration Management

When you build computer software, change happens. And because it

happens, you need to control it effectively. Software configuration management

(SCM) is a set of activities that are designed to control change by identifying the

work products that are likely to change, establishing relationships among them,

defining mechanisms for managing different versions of these work products,

controlling changes that are imposed, and auditing and reporting on the

changes that are made.

The Software configuration management (SCM) is an activity that is applied

throughout the S/W engineering process since a change can occur at any time,

SCM activities are developed for the following,

� Identify change,

� Control change,

� Ensure that change is properly implemented,

� Report change to others who may have interest.

SCM is a set of tracking and control activities that begin when a software

development project begins and ends only when the software is retired.

The process of identifying and defining the configuration items in a software
system, controlling the release, versioning and change of these items though
out the software system life cycle, recording and reporting the status of
configuration items and change requests, and verifying the completeness and
correctness of configuration items.

Software configuration management (SCM) is a "set of activities designed to
control change by identifying the work products that are likely to change,
establishing relationships among them, defining mechanisms for managing
different versions of these work products, controlling the changes imposed, and
auditing and reporting on the changes made." In other words, SCM is a
methodology to control and manage a software development project.

SCM concerns itself with answering the question: somebody did something,
how can one reproduce it? Often the problem involves not reproducing "it"

 157

identically, but with controlled, incremental changes. Answering the question
will thus become a matter of comparing different results and of analysing their
differences. Traditional CM typically focused on controlled creation of relatively
simple products. Nowadays, implementators of SCM face the challenge of
dealing with relatively minor increments under their own control, in the context
of the complex system being developed.

The goals of SCM are generally:

• Configuration Identification- What code are we working with?

• Configuration Control- Controlling the release of a product and its
changes.

• Status Accounting- Recording and reporting the status of components.

• Review- Ensuring completeness and consistency among components.

• Build Management- Managing the process and tools used for builds.

• Process Management- Ensuring adherence to the organizations
development process.

• Environment Management- Managing the software and hardware that
host our system.

• Teamwork- Facilitate team interactions related to the process.

• Defect Tracking- making sure every defect has traceability back to the
src

9.4.2. Configuration management techniques

An important aspect of configuration management. A configuration item
is a unit of configuration that can be individually managed and versioned.
Typically, a configuration management system will control files, requirements,
or another definable unit. These units are managed with a combination of
process and tools to avoid the introduction of errors and to maintain high
quality results. The units themselves can be considered configuration items, or
they may be combined into an overall collection that is managed under the
same set of processes and tools.

From the perspective of the implementor of a change, the configuration
item is the "what" of the change. Altering a specific baseline version of a
configuration item creates a new version of the same configuration item, itself a
baseline. In examining the effect of a change, we first ask "what configuration
items are affected" and then proceed to "how have the configuration items been
affected". A release (itself a versioned entity) may consist of several
configuration items. The set of changes to each configuration item will appear
in the release notes, and the notes may contain specific headings for each
configuration item.

As well as participating in the implementation of a change and in the
management of a change, the listing and definition of each configuration item
may act as a common vocabulary across all groups connected to the product. It
should be defined at a level such that an individual involved with product

 158

marketing and an individual at the coal face of implementation can agree to a
common definition when they use the name of the configuration item. Selection
and identification of configuration items for a particular project can be seen as
the first step in developing an overall architecture from the top down.

Configuration items, their versions and their changes form the basis of
any configuration audit.

9.5. SOURCE CODE METRICS

A great deal of effort has been expended on developing metrics to

measure the complexity of source code. Most of the metrics incorporate easily

compute properties of the source code, such as the no. of operators and

operands, the complexity of the control flow graph, the no. of parameters and

global variable in routines and the no. of levels and manner of interconnects of

the call graph.

Source-code complexity measures can be used to determine the

complexity of a program before and after modification, and used to identify

candidate routines for further refinement and rework. Two source-code metrics

are discussed in this section: a. Halstead’s effort equation, and McCabe’s

cyclomatic complexity measure.

Measuring program maintainability

• Maintainability metrics are based on the assumption that the

maintainability of a program is related to its complexity.

• The metrics measure some aspects of the program complexity.

• It is suggested that high complexity values correlate with difficulties in

maintaining a system component.

• The complexity of a program can be measured by considering (Halstead’s

effort)

• the number of unique operators,

• the number of unique operands,

• the total frequency of operators, and

• the total frequency of operands in a program.

• The program complexity is not dependent on size but on the decision

structure of the program. Measurement of the complexity of a program

depends on transforming the program so that it may be represented as a

graph and counting the number of nodes, edges and connected

components in that graph ([McCabe cyhclomatic complexity measure]).

Program evolution dynamics by Lehman

 159

Lehman's laws

1. The law of continuing change: A program that is used in a real-world

environment necessarily must change or become less and less useful in

that environment.

2. The law of increasing complexity: As an evolving program changes,

its structure becomes more complex unless active efforts are made to

avoid this phenomenon.

3. The law of large program evolution: Program evolution is a self-

regulating process and measurement of system attributes such as size,

time between releases, number of reported errors, etc., reveals

statistically significant trends and invariances.

4. The law of organizational stability: Over the lifetime of a program, the

rate of development of that program is approximately constant and

independent of the resources devoted to system development.

5. The law of conservation of familiarity: Over the lifetime of a system,

the incremental system change in each release is approximately

constant.

• The first law tells us that system maintenance is an inevitable process.

Fault repair is only part of the maintenance activity and that changing

system requirements will always mean that a system must be changed if

it is to remain useful. Thus, the constant theme of this text is that

software engineering should be concerned with producing systems whose

structure is such that the costs of change are minimized.

• The second law states that, as a system is changed, its structure is

degraded and additional costs, over and above those of simply

implementing the change, must be accepted if the structural degradation

is to be reversed. The maintenance process should perhaps include

explicit restructuring activities which are simply aimed at improving the

adaptability of the system. It suggests that program restructuring is an

appropriate process to apply.

• The third law suggests that large systems have a dynamic all of their own

and that is established at an early stage in the development process.

This dynamic determines the gross trends of the system maintenance

process and the particular decisions made by maintenance management

are overwhelmed by it. This law is a result of fundamental structural and

organizational effects.

• The fourth law suggests that most large programming projects work in

what he terms a 'saturated' state. That is, a change of resources or

staffing has imperceptible effects on the long-term evolution of the

system.

 160

• The fifth law is concerned with the change increments in each system

release.

• Lehman's laws are really hypotheses and it is unfortunate that more

work has not been carried out to validate them. Nevertheless, they do

seem to be sensible and maintenance management should not attempt to

circumvent them but should use them as a basis for planning the

maintenance process. It may be that business considerations require

them to be ignored at any one time (say it is necessary to make several

major system changes). In itself, this is not impossible but management

should realize the likely consequences for future system change.

9.6. OTHER MAINTENANCE TOOLS AND TECHNIQUES

Any craftsperson, a mechanic or a carpenter, needs a good workshop

with tools. The workshop for software engineering is called an integrated project

support environment and the tool set that fills the workshop is called

Computer-Aided Software Engineering (CASE). CASE provides the software

engineer with the ability to automate manual activities and to improve

engineering insight. Like computer-aided engineering and design tools that are

used by engineers in other disciplines, CASE tools help to ensure that quality is

designed in before the product is built.

Building Blocks for Case

Computer aided software engineering can be as simple as a single tool or as

complex as a complete environment. The building blocks for CASE are:

o environment architecture

o hardware platform

o operating system

o portability services

o integration framework, and

o CASE tools

Each building block forms a foundation for the next, with tools sitting at the

top of the heap. Successful environments for software engineering are built on

an environment architecture that encompasses appropriate hardware and

systems software.

Taxonomy of Case Tools

It is necessary to create taxonomy of CASE tools - to better understand

the breadth of CASE and to better appreciate where such tools can be applied

in the software engineering process. CASE tools can be classified by function,

by their role as instruments for managers or technical people, by their use in

the various steps of the software engineering process, by the environment

 161

architecture (hardware and software) that supports them, or even by their

origin or cost. The taxonomy presented here uses function as a primary

criterion.

Business process engineering tools:

By modeling the strategic information requirements of an organization,

business process engineering tools provide a 'meta-model' from which specific

information systems are derived. The primary objective for tools in this category

is to represent business data objects, their relationships, and how these data

objects flow between different business areas within a company.

Process modeling and management tools:

Process modeling tools (also called process technology tools) are used to

represent the key elements of a process so that it can be better understood.

Process management tools provide links to other tools that provide support to

define process activities.

Project planning tools:

Tools in this category include software project effort and cost estimation

tools and project scheduling tools. Project scheduling tools enable the manger

to define all project tasks, create a task network, represent task

interdependencies, and model the amount of parallelism possible for the project.

Risk analysis tools:

Risk analysis tools enable a project manager to build a risk table by

providing detailed guidance in the identification and analysis of risks.

Project management tools:

Tools in the category are often extensions to project planning tools and

are used to collect metrics that will ultimately provide an indication of software

product quality.

Requirements tracing tools:

The objective of requirements tracing tools is to provide a systematic

approach to the isolation of requirements, beginning with the customer request

for proposal or specification. The typical requirements tracing tool combines

human-interactive text evaluation with a database management system that

stores and categories each system requirement that is “parsed" from the

original specification.

Metrics and managements tools:

Metrics or measurement tools focus on process and product

characteristics. Management-oriented tools capture project specific metrics (e.g.,

LOC/person-month, defects per function point) that provide an overall

indication of productivity or quality. Technically oriented tools determine

technical metrics that provide greater insight into the quality of design or code.

 162

Documentation tools:

Documentation production and desktop publishing tools support nearly

every aspect of software engineering and represent a substantial "leverage"

opportunity for all software developers. It is not unusual for a software

development organization to spend as much as 20 or 30 percent of all software

development effort on documentation.

System software tools:

CASE is a workstation technology. Therefore, the CASE environment

must accommodate high quality network system software, object management

services, distributed component support, electronic mail, bulletin boards, and

other communication capability.

Quality assurance tools:

The majority of CASE tools that claim to focus and quality assurance are

actually metrics tools that audit source code to determine compliance with

language standards. Other tools extract technical metrics in an effort to project

the quality of the software that is been built.

Database management tools:

Database management software serves as a foundation for the

establishment of a CASE database (repository) that is called the project

database.

Software configuration management tools:

Software Configuration Management (SCM) lies at the kernel of every

CASE environment. Tools can assist in all five major SCM tasks - identification,

version control, change control, auditing, and status accounting.

Analysis and design tools:

Analysis and design tools enable a software engineer to create models of

the system to be built. The models contain a representation of data, function,

and behavior and characterizations of data, architecture, component-level, and

interface design.

Pro/Sim tools:

PRO/SIM (Prototyping and Simulation) tools provide the software

engineer with the ability to predict the behavior of a real-time system prior to

the time that it is built. In addition, these tools enable the software engineer to

develop mock-ups of the real-time system, allowing the customer to gain insight

into the function, operation, and response prior to actual implementation.

Interface design and development tools:

 163

Interface design and development tools are actually a tool kit of software

components (classes) such as menus, buttons, window structures, icons,

scrolling mechanisms, device drivers, and so forth.

Prototyping tools:

Prototyping tools such as screen printers enable a software engineer to

define screen layout rapidly for interactive applications. More sophisticated

CASE prototyping tools enable the creation of a data design, coupled with both

screen and report layouts.

Programming tools:

The programming tools category encompasses the compilers, editors, and

debuggers that are available to support most conventional and object–oriented

programming languages, graphical programming environments, application

generators, and database query languages reside within this category.

Web development tools:

The activities associated with web engineering are supported by a variety

of tools for Web Application development that assist in the generation of text,

graphics, forms, scripts, applets, and other elements of a Web page.

Integration and testing tools:

The testing tools categories are:

• Data acquisition - tools that acquire data to be used during testing.

• Static measurement - tools that analyze source code without

executing test cases.

• Dynamic measurement - tools that analyze source code during

execution.

• Simulation - tools that simulate functions of hardware or other

externals.

• Testing management - tools that assist in the planning, development,

and control of testing.

• Cross-functional tools - tools that cross the bounds of the preceding

categories.

Static analysis tools:

Static testing tools assist the software engineer in deriving test cases.

Three different types of static testing tools are used in the industry: code-based

testing tools, specialized testing languages, and requirements-based testing

tools. Code-based testing tools accept source code as input and perform a

number of analyses that result in the generation of test cases. Specialized

testing languages enable a software engineer to write detailed test specifications

that describe each test case and the logistics for its execution. Requirements-

 164

based testing tools isolate specific user requirements and suggest test cases

that will exercise the requirements.

Dynamic analysis tools:

Dynamic testing tools interact with an executing program, checking path

coverage, testing assertions about the value of specific variables, and otherwise

incrementing the execution flow of the program. Dynamic tools can be either

intrusive or nonintrusive. An intrusive tool changes the software to be tested by

inserting probes. Nonintrusive tools use a separate hardware processor that

runs in parallel with the processor containing the program that is being tested.

Test management tools:

Test management tools are used to control and coordinates software

testing for each of the major testing steps. Tools in this category manage and

coordinate regression testing, perform comparisons that ascertain differences

between actual and expected output, and conduct batch testing of programs

with interactive human/computer interfaces. In addition to the functions noted,

many test management tools also serve as genetic test drivers. A test driver

reads one or more test cases from a testing file, formats the test data to conform

to the needs of the software under test, and then invokes the software to be

tested.

Client/server testing tools:

The C/S environment demands specialized testing tools that exercise the

graphical user interface and the network communications requirements for

client and server.

Reengineering tools:

The reengineering tools category can be subdivided into the following

functions:

1) Reverse engineering to specification tools - take source code as input

and generate graphical structural analysis and design models, where

-user lists, and other design information.

2) Code restructuring and analysis tools - analyze program syntax,

generate a control flow graph, and automatically generate a

structured program.

3) On-line system reengineering tools - are used to modify on-line

database systems.

These tools are limited to specific programming languages and require some

degree of interaction with the software engineer.

Check your progress

i. The __________________ is an activity that is applied throughout the S/W

engineering process

 165

ii. A great deal of effort has been expended on developing metrics to measure the

_________ of source code.

iii. The workshop for software engineering is called an integrated project support

environment and the tool set that fills the workshop is called

_______________________.

Solutions

i

ii

iii

9.7. REVIEW QUESTIONS

1) What are the different project management tools? Explain them.

2) Explain different Analysis and design tools.

3) What are the different programming tools? Explain them.

4) What are the different Integration and testing tools?

5) Explain the three static analysis tools.

6) Write short notes on,

a. Dynamic analysis tools.

b. Test management tools.

c. Prototyping tools.

7) Write a short note on Tools Integration

9.8. LET US SUM UP

Software Maintenance Activities

• Maintenance can be defined as four activities:

o Corrective Maintenance

� A process that includes diagnosis and correction of errors.

o Adaptive Maintenance

 166

� Activity that modifies software to properly interface with a

changing environment (hardware and software).

o Perfective Maintenance

� Activity for adding new capabilities, modifying existing

functions and making general enhancements.

� This accounts for the majority of all effort expended on

maintenance.

o Preventive Maintenance

� Activity which changes software to improve future

maintainability or reliability or to provide a better basis for

future enhancements.

� Still relatively rare.

• Distribution of maintenance activities (based on a study of 487

software development organizations):

o Perfective: 50%

o Adaptive: 25%

o Corrective: 21%

o Others: 4%

9.9. LESSON END ACTIVITIES

Pick up a program and its documentation from a classmate. Without contact

with the classmate, exercise the program by designing and running several test

cases. Could you maintain this program? If not, what additional information

would you need to maintain it?

9.10. POINTS FOR DISCUSSION

1) If a software product or part of it spends 65% of its operational life cycle

in maintenance, why do you suppose so little attention is paid to

maintainability during the design phase?

 167

9.11. REFERENCES

1) Ian Sommerville, Software engineering, Pearson education Asia, 6th edition,

2000.

2) James F Peters and Witold Pedryez, “Software Engineering – An Engineering

Approach”, John Wiley and Sons, New Delhi, 2000.

3) Pankaj Jalote- An Integrated Approach to Software Engineering, Springer

Verlag, 1997.

4) Richard Fairley, “Software Engineering Concepts”, Tata McGraw-Hill, 1997.

5) Roger S.Pressman, Software engineering- A practitioner’s Approach,

McGraw-Hill International Edition, 5th edition, 2001.

6) Shooman, “Software Reliability”, McGrawHill Edition.

7) http://www.sei.cmu.edu

8) http://www.rai.com/soft_eng/sme.htm

