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1.0 AIMS AND OBJECTIVES 

After studying this lesson, you would be able to understand:  

 The purpose of testing 

 Roles of models 

 Playing pools and consulting oracles 

 A model for testing 
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Software Testing 1.1 INTRODUCTION  

Software testing is a process, or a series of process, designed to ensure that the 
computer code does what it is designed for and does not do something that is not 
intended. Software must be predictable and consistent, offering no surprises to its 
users.  

Testing involves at least half of the time and efforts spent to build working software. 
And the efforts put into testing are considered waste if the tests conducted on the code 
do not reveal all the errors. 

Testing ensures presence of errors, not the absence of errors. Even after a code has 
been tested thoroughly, it can report errors. So, even the best written code can have 
errors. The only way to minimize it is to devise best possible test design and carry out 
testing which covers maximum possible functionality. 

1.2 PURPOSE OF SOFTWARE TESTING 

While testing a program, it is required to add value to it. This would mean increasing 
the quality or reliability of the program i.e. finding errors and removing them. 

Thus, one must not test a program to show that it works but with an aim to reveal 
errors and that too as much as possible. 

Testing is the process of executing a program with the intent of finding errors. 

Thus, the objectives of testing can be listed as below: 

 Executing a program in order to find errors. 

 A good test case is the one that has a high probability of finding an undiscovered 
error. 

 A successful test is the one that reports an as–yet undiscovered error. 

The objective while designing tests is to come up with the test cases that 
systematically uncover different classes of errors in minimum possible time and effort. 

1.3 SOME DICHOTOMIES 

1.3.1 Testing versus Debugging 

Often, testing and debugging are grouped in the same category and are confused with 
one another. However, the purpose of testing is to show the presence of errors in a 
program and the purpose of debugging is to find errors or misconception that led to 
the failure of the program and to design and implement the changes that can correct 
these errors. Debugging normally follows testing. 

 Testing begins with known conditions, uses pre-defined procedures and has 
predictable outcomes. Debugging starts from possibly unknown initial conditions 
and the end cannot be predicted, except statistically. 

 Testing can be planned, designed and scheduled. However, the procedures and 
duration of debugging cannot be constrained. 

 Testing detects the errors and debugging is a deductive process. 

 Testing proves a programmer’s failure and debugging a programmers’ 
vindication. 

 Testing is subset of verification and validation. 
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 Testing can be done by an outsider, but debugging must be done by an insider. 

 Test execution and design can be automated. Automated debugging is still a 
vision. 

1.3.2 Function versus Structure 

Tests can be designed either functionally or structurally. In the functional testing the 
program or system is treated as a black box. This box is fed with inputs and its outputs 
are verified with reference to a specific behavior. Thus, the software user is concerned 
only with the functionality of the software, but not in the implementation details.  
It uses the user’s point of view. 

In the structural testing, we make use of the implementation details. Programming 
methodology, control methods, source language, database design, etc. are things that 
matter in the structural testing. Every good system is built in layers – from outside to 
inside. The outer layer, which comprises only functions, is visible to the users; 
whereas the inner layers are less related to the functions and more to the structure. 
Thus, what is structural to one layer is functional to the next. 

There is no controversy between structural and functional tests; both are useful and 
have their own shortcomings. These two tests targets have two different types of 
audiences. Functional tests can, ideally, detect all bugs but will take unlimited time to 
do so. Structural tests are finite but it cannot detect all the errors, even after they are 
executed completely. 

1.3.3 The Designer versus the Tester 

If testing was wholly based on functionality and independent of structures, then the 
designer and tester could work separately. However, in order to design a test plan 
based only on a system’s structural detail would require the designer’s knowledge. 
Thus, a designer’s role is to design the transform the customer’s requirement 
specifications into a structure which is suitable for implementation. Thus, a designer 
must know about the product resulting from the design and the process to obtain the 
same. The more information one has about the design, the better would be the 
designing of the tests, elimination of useless tests. Thus, the role of a tester is to verify 
and validate the technique that ensures that the software has been developed to meet 
the users’ needs and specifications. Although testing can only occur after the software 
has been developed, the test planning and test case design activities can be conducted 
in parallel with the specification and design activities. A tester, thus, designs test 
cases, executes them and compares the actual result with the expected result to see if 
the software is behaving as intended. Thus, a tester’s role is not structure oriented and 
thus allows him to work in a better way. 

1.3.4 Modularity versus Efficiency 

Both tests and systems can be modular. A module is a discreet, well-defined, small 
component of a system. Smaller components are easier to understand. Each 
component has multiple interfaces with which it interacts with other components. The 
interfaces are sources of bugs. Thus, the smaller components are more prone to 
interface bugs. The bigger components reduce the external interfaces but have 
complicated internal logic. Thus, it is important to decide the size of the components 
and its interface complexity to achieve an overall complexity minimization. 

Testing done on smaller modules is easily repeatable. In case of an error, only the 
small component can be retested without the need to re-test the complete system. 
Similarly, if a test has an error, only one test needs to be changed and not the whole 
test plan. 
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1.3.5 Small versus Large 

Building large programs means constructing different small programs by different 
people and then putting them together. Programming for a small code can be done 
single-handed, without the need of involving many people in it. With size, come into 
effect the non-linear scale effects. As the size of the program changes, it affects the 
program qualitatively and it’s testing methods. Carrying out 100% testing of a small 
program is possible; however, a complete round of testing of an aggregate program 
comes down to only 75-85% and may be as low as 50% for huge systems (containing 
10 millions lines of code). 

1.3.6 The Builder versus the Buyer 

If software is written and used by the same organization, it calls for a lot of 
accountability. Thus, the organizations today are shifting towards independent 
software development. Independent development means the developer of the software 
would be different from the software houses or organizations that pay for that 
software. This method of software development is beneficial as it leads to better 
software, better security and better testing. Also, it makes the accountability clear. 
Accountability ensures the software quality and proper software testing. 

The Builder and buyer of the software can become one just as the developer and the 
tester. Similarly, there are other roles which can be separated or combined in a 
software market: 

 The builder, who designs the software and is accountable for the same to. 

 The buyer, who pays for the system in the hoping for profits from. 

 The user, who ultimately benefits from the system ad whose interests are guarded 
by. 

 The tester, who is dedicated to builder’s destruction, and 

 The operator, who lives with mistakes of the builder, shadowy specification of the 
buyer, oversights of the tester and the user’s complaints. 

Check Your Progress 1 

 State whether the following statements are true or false: 

1. Testing is done in order to remove errors.  

2. Testing requires at least half the time required to build working software.  

3. Effective test cases are the ones that reveal maximum errors in minimum 
time. 

1.4 A MODEL FOR TESTING 

All the systems ranging from a subroutine to a millions of statements require testing. 
The typical system is that which allows exploration of all testing aspects without any 
complications. It’s medium-scale programming. Given below in figure 1.1 is a model 
of testing: 
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Figure 1.1: A Model for Testing 

Figure 1.1 depicts a model of the testing process. It begins with a program rooted in an 
environment, an operating system or a calling program. Based on our understanding of 
the human nature and its susceptibility to error, we can create three models: model of 
the environment, model of the program and a model of the expected bugs. From all 
these models, we create a set of tests which are then executed later on. These results 
can either be expected or unexpected. In case of an unexpected result, we may need to 
change the test or the model or the way program behaves, or concept of possible bugs, 
or the program itself. Very rarely would it be required to change the environment. 

1.4.1 The Environment 

A program’s environment comprises of the hardware and the software required for 
making it run. It also includes all the programs interacting with it and used to create 
this program under test e.g. operating system, loader, linker, compiler, etc.  

A testing environment comprises of a test plan which details the tests that will be 
carried out and the test cases which describe how we will test each of the components. 
Creation of a test environment reduces the risk of errors occurring when the software 
is put to actual use and thereby reducing the downtime of the software. 

1.4.2 The Program 

A lot of programs are too complicated to understand. Thus, we need to simplify our 
concept i.e. ignore a lot of details, of the program in order to test it. We might ignore 
the called subroutines and concentrate on the program unless we suspect the former. 
Similarly, we can ignore the process details so that we can focus on the control 
structure of the program or vice versa. If the simple model of an environment does not 
explain the unexpected behavior we might have to include more facts and details. 

1.4.3 Bugs 

Bugs are more dangerous than we expect them to be. A lot of developers and testers 
have some preconceived notions about the bugs. These are just myths and need to be 
removed from the mind in order to test the system effectively. These are listed below: 

 Benign bug hypothesis: The belief that bugs are nice, tame and logical. Only 
week bugs are logical and are open to exposure based on logical means. Subtle 
bugs have no definable patterns. 
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 Bug locality hypothesis: A bug occurring in a particular module affects only that 
module locally and not the other modules. However, this is not the case with the 
subtle bugs. Their consequences are far removed from the cause in time and space 
from the component in which they exist. 

 Control bug dominance: The belief that errors in the control structure are more 
dominant. While bugs related to control-flow, data-flow and data structures flow 
can be traced easily, subtle bugs that violate the data structures boundaries and 
data/code separation can’t be found by merely looking at the control structures. 

 Code/Data separation: The belief that bugs respect the separation of data and 
code. The distinction between data and code is hard to make in a real system and 
this permits the existence of such bugs. 

 Correction abide: The belief that a corrected bug remains corrected. We might 
have changed one of the interacting components in the event of a bug believing it 
as the cause, however, the bug might re-occur as it was caused by some other 
component which we did not change. 

 Silver bullets: The mistaken belief that A (language, design, representation, 
environment, etc.) makes the program immune of bugs. It might reduce the 
severity of bugs but not the complete occurrence of bugs. 

 Sadism effect: The belief that intuition and cunningness are sufficient to detect 
bugs. This is true for easy bugs but the tough bugs need proper methodology and 
techniques for detection. 

1.4.4 Tests 

Tests are formal procedures and are prone to bugs. Since, inputs are prepared, outputs 
predicted, commands executed and results observed, these steps are prone to errors. 
An unexpected test result could have been caused due to either test bug or real bug. 
Bugs can creep in documentation, inputs and the commands and over-shadow our 
observation of results. Thus, it might be required to change the mentality of the tester 
rather than the tests themselves. 

1.4.5 Testing Levels 

We can do different kinds of testing on a software system: unit/component testing, 
integration testing and system testing. Each of these methods differs in their objective 
and can be used in combination with one another. 

 Unit Testing: A unit is the smallest testable piece of software. It is the work of a 
programmer and contains fewer lines of code. Unit testing is the testing done to 
show that the unit does not satisfy its functional specification and/or its 
implemented structure does not match the intended design structure. The faults 
resulting from such testing are called unit bugs. 

 Component Testing: A component is an integration of one or more units. A unit is 
also a component and a component with subroutines it calls is a component, etc. 
By this recursive definition, a component can be anything ranging from a unit to a 
complete system. Component testing is the testing done to show that the 
component does not satisfy its functional specification and/or its implemented 
structure does not match the intended design structure. The faults resulting from 
such testing are called component bugs. 

 Integration Testing: Integration is the process of aggregating the components to 
create larger components. Integration testing is done to show that even though the 
individual components were satisfactory individually, as per the components’ 
tests, the combination of components is incorrect or inconsistent. Integration 
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testing is different from testing the integrated components, which is just a higher 
level component testing. Integration testing is aimed at exposing the problems that 
arise from the combination of components. 

 System Testing: A system is a big component. System testing is done to reveal the 
bugs that cannot be attributed to the components, their inconsistencies or their 
interactions. System testing concerns issues and behavior that can be revealed 
only by testing the entire integrated system or a major chunk of it. It includes 
performance testing, security testing, accountability testing, configuration 
sensitivity testing, start-up and recovery testing. 

1.4.6 The Role of Models 

Testing is a process in which we create mental models of the environment, program, 
human nature and the tests themselves. Each model is used either till the system is 
accepted or until the model is no longer sufficient for the purpose. Unexpected results 
force the revision of the model which can be more detailed, complicated, abstract or 
simpler. Thus, the art of testing comprises of creating, selecting, exploring and 
revising models. 

Check Your Progress 2 

1. Fill in the blanks: 

(a) .................... testing is aimed at exposing the problems that arise from 
the combination of components. 

(b) ................... is the smallest testable piece of software. 

2. State whether the following statements are true or false: 

(a) A bug once corrected will occur never again. 

(b) Unit testing is the smallest testable piece of software. 

1.5 PLAYING POOLS AND CONSULTING ORACLES 

1.5.1 Playing Pool 

Testing is like a playing pool. Like the way we have a real and kiddie pool, we have 
real testing and kiddie testing. In kiddie testing, the tester says that the observed 
outcome of the test was the expected outcome. In real testing, the outcome is predicted 
and documented before the actual test run. If a tester cannot predict the outcome of a 
test, it means that the tester cannot understand the functional objectives. This 
misunderstanding can lead to bugs in the program or tests or both. 

1.5.2 Oracles 

An oracle is any program, process or body of data that specifies the expected outcome 
of a set of tests as applied to a tested object. There are different types of oracles like 
the testing concerns. The most common one, however, is the input/outcome oracle- an 
oracle that specifies the expected outcome for a specified input. 

Sources of Oracles 

If the test designer can predict the expected behavior of a test it is always good for the 
test design but at the same time very costly. However, this hard task has been eased 
with the use of oracles. Listed below are some of the sources of oracles: 

1. Kiddie testing: Run the test and observe the outcome. It is always better to 
validate the outcome with an already available outcome rather than predicting an 
outcome and then validating it. 
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2. Regression test suites: Majority of the projects today run on rework and 
maintenance of the existing software. In this case, it would be required to rerun 
some tests that were carried on the older version on the newer version and all 
these should have the same outcome. Thus, it is required to predict the outcome of 
only the changed parts of the system. 

3. Purchased Suites and Oracles: Test suites and oracles of highly standardized 
software are commercially available, e.g. compilers of standard languages, 
communication protocols, and mathematical routines. More oracles would be 
available in market as more and more software would get standardized. 

4. Existing Program: A working entrusted program is always the best oracle. The 
typical use of such oracles would be like re-hosting them to a new language, OS, 
environment, configurations, or to a combination of these, with an intention that 
the behavior should not be altered after re-hosting. 

1.6 IS COMPLETE TESTING POSSIBLE? 

Testing carried out to show that a program is free of errors is practically and 
theoretically impossible. The three different approaches of testing can be structural 
testing, functional testing and formal proofs of correctness. Each of these approaches 
concludes that the complete testing is impossible. 

 Structural Testing: Tests should be designed to ensure that every path of the 
routine is exercised at least once. Ideally, it is impossible as some of the loops 
might never cease. Even a small loop might have millions of paths resulting from 
each loop as each loop path multiplies the path count by the number of times 
through the loop. Thus, it can be concluded that pure structural testing cannot 
ensure that the system is doing the right thing. 

 Functional Testing: Every program works on a finite number of inputs. A 
complete functional testing would mean subjecting a program to all possible 
inputs. For each input, the system would generate either a correct output, an 
incorrect output or reject the input and highlights the same. Thus, the problem is 
reduced only to verify that the correct outcome is produced. So, complete 
functional testing is practically impossible. 

 Correctness Proofs: Formal proofs for correctness rely on a combination of 
functional and structural concepts. Requirements are stated in a formal language 
and each program statement is examined and used in a step of an inductive proof 
that the routine will produce the correct outcome for all possible input 
combinations. The problem here is that such proofs are very expensive and can be 
applied only to numerical routines or to the formal proofs for crucial software 
such as system’s security kernel or compiler portions. 

Manna and Waldinger (MANN78) have clearly summarized the theoretical barriers to 
complete testing: 

 “We can never be sure that the specifications are correct.” 

 “No verification system can verify every correct program.” 

 “We can never be certain that a verification system is correct.” 

1.7 LET US SUM UP 

Testing is a very critical part of software development. It consumes at least half the 
effort that goes into building the software. Testing is done to ensure the correctness of 
the program. The more errors revealed during testing, the reliable is the program. 
Testing ensures presence of errors but cannot guarantee the absence of errors. 
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A lot of techniques of testing exist like Structural, functional and correctness of 
proofs, however, none of these is self-sufficient to completely test the program nor can 
they ensure that in combination with one another. 

Testing a system may require creating a model which will resemble the real 
environment in which the system is expected to run. Testing is like a playing pool 
which can be carried out with the help of oracles. Testing of a program can be carried 
out at different levels: unit testing, component testing, integration testing and system 
test. 

1.8 LESSON END ACTIVITIES 

1. Discuss the various testing levels in detail. 

2. Is complete testing possible? Justify with proper reasoning. 

3. Differentiate between testing and debugging. 

1.9 KEYWORDS 

Testing: Testing is the process of executing a program with the intent of finding 
errors. 

Debugging: Debugging is the process of finding errors or misconception that led to 
the failure of the program and to design and implement the changes that can correct 
these errors. 

Module: A module is a discreet, well-defined, small component of a system.  

Unit: A unit is the smallest testable piece of software. 

Unit testing: Unit testing is the testing done to show that the unit does not satisfy its 
functional specification and/or its implemented structure does not match the intended 
design structure.  

Unit bugs: The faults resulting from unit testing are called unit bugs. 

Component: A component is an integration of one or more units. 

Integration: Integration is the process of aggregating the components to create larger 
components. 

Oracle: An oracle is any program, process or body of data that specifies the expected 
outcome of a set of tests as applied to a tested object. 

1.10 QUESTIONS FOR DISCUSSION 

1. How does a designer differ from a tester? Explain. 

2. Explain how modularity and efficiency related to one another. 

3. Describe a testing model in detail. 

4. Why is testing important? What are its goals? 
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 Check Your Progress: Model Answers 

 CYP 1 

 1. False 

 2. True 

 3. True 

 CYP 2 

 1. (a) Integration 

  (b) Unit 

 2. (a) False 

  (b) True 

1.11 SUGGESTED READINGS 
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Myers and Glenford, J., The Art of Software Testing, John-Wiley & Sons, 1979. 

Roger, S. Pressman, Software Engineering – A Practitioner’s Approach, 5th Edition, McGraw 
Hill, 2001. 

Marnie, L. Hutcheson, Software Testing Fundamentals, Wiley-India, 2007. 
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2.0 AIMS AND OBJECTIVES 

After studying this lesson, you would be able to understand:  

 The consequences of bugs and their importance 

 Requirements, features and functionality bugs 

 Structural bugs and their types 

 Data, coding and system bugs 

 Test and test design bugs 
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A bug can be important in the terms of correction cost, frequency, installation cost, 
and consequences. The bugs can affect us in many ways depending upon their 
severity. The severity must be measured in humanistic terms rather than machine 
terms. The importance of a bug can be calculated with the help of its frequency of 
occurrence, correction cost, installation and consequential cost. 

A bug might be creep in any part of the software development life cycle. It could be 
related to requirements specification, requirements validation, requirement reviews, 
structural bugs, etc. We will discuss all these in detail in this lesson. 

2.2 THE CONSEQUENCES OF BUGS 

2.2.1 The Importance of Bugs 

The importance of bugs depends upon their frequency, correction cost, installation 
cost and consequences. 

 Frequency: It is important to know so as to how regularly a bug occurs and what 
are the bugs which occur most regularly. 

 Correction cost: It is important to have an idea about the cost to correct the bug 
after it is found. This cost is the sum of two factors: (i) the cost of discovery and 
(ii) the cost of correction. These costs go up drastically if the bug is found in the 
later parts of the software life cycle. Correction of larger programs incurs higher 
cost. 

 Installation cost: It depends upon the number of installation: small for a single 
user program, but how about a PC operating system bug? Installation cost can 
dominate over other costs – fixing one simple bug and distributing the fix could 
exceed the entire system’s development cost. 

 Consequences: The consequences of the occurrence of bugs can be measured by 
the means of mean size of the awards given to the victim of the bugs. 

The metric for the measurement of bug importance is: 

Importance ($) = Frequency* (Correction cost + Installation cost + Consequential 
cost) 

Frequency does not tend to depend upon application or environment but the other 
three do. As designers, testers, and QA workers, one must be interested in bug 
importance and not only the frequency. Thus, it is required to come up with your own 
importance model. 

2.2.2 How Bugs Affect Us – Consequences 

The consequences of bugs range from mild to catastrophic. They should be measured 
in human terms and not in machine terms because programs are written to be used by 
the human beings. Let us discuss these consequences in detail: 

1. Mild: The symptoms of the bug offend us aesthetically e.g. a misspelled output, a 
misaligned printout. 

2. Moderate: Outputs are misleading or redundant. The bug impacts the system 
performance. 

3. Annoying: The system’s behavior is dehumanizing because of the bug. E.g. 
names are truncated or arbitrarily modified; bills for Rs. 0.00 have been sent, etc. 
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4. Disturbing: It refuses to handle legitimate transactions e.g. an ATM not 
dispensing money on my debit card and giving card invalid. 

5. Serious: The program losing the track of transactions, the transactions occurred 
but the accountability is lost. 

6. Very serious: Rather than losing your pay check, it is credited to other person’s 
account. 

7. Extreme: The problems are not limited to a few users or transaction types. They 
are frequent and arbitrary instead of erratic or for odd cases. 

8. Intolerable: Long-term, unrecoverable corruption of data base, etc. 

9. Catastrophic: The system fails and the decision to shut down is taken out of our 
hands. 

10. Infectious: System corrupting other system, one that melts a nuclear reactor, etc; 
whose influence of malfunctioning is far more than expected; a system that kills. 

2.2.3 Flexible Severity rather than Absolute 

Quality of a program can be measured from the combination of number of bugs and 
their severity. Bugs and their symptoms play a significant role. As testing progresses 
we can see the quality rise from next to zero to some value at which it is deemed safe 
to ship the product. Let us have a look at how these parts are weighed depending upon 
the environment, application, culture, etc. 

 Correction Cost: The cost of correcting a bug has nothing to do with the symptom 
severity. Catastrophic or life-threatening bugs could be easy to fix whereas minor 
annoying ones might require major corrections to be done. 

 Context and Application Dependency: The severity of a bug may vary depending 
upon the context of occurrence, e.g. a round calculation may not matter much in a 
space video game but will matter to an astronaut. 

 Creating Culture Dependency: Importance depends upon the software creators 
and their cultural aspirations, e.g. a test tool vendor is more sensitive towards in 
their production than a games software vendor. 

 Software Development Phase: Severity depends on the development phase. Any 
bugs gets severe as it gets closer to field use and more severe the longer it is 
around as the correction cost of this bug increases drastically. 

2.3 TAXONOMY FOR BUGS 

There is no universally correct way to categorize bugs. Thus, there is no fixed 
taxonomy which can be applied to categorize bugs. A singe bug can be put into 
different categories depending upon its history and the programmer’s mind state. The 
major categories used are: requirements, features and functionality, structure, data, 
implementation and coding, integration, system and software architecture and testing. 
Bug taxonomy is potentially infinite just like software testing. Adopting a single 
taxonomy and using it as a statistical framework to carry out the testing is more 
important than adopting a right taxonomy.  

2.3.1 Requirements, Features and Functionality Bugs 

Requirements and Specifications 

Requirements and the specifications obtained from them can be ambiguous or 
incomplete. They can be difficult to understand or misunderstood. The specification 



  

20 
Software Testing 

may assume other specifications which are known to the one who specifies but not to 
the designer. And there is also a possibility that specifications might change during 
design. New features would be added and old deleted or modified. 

Thus, requirements are a major source of bugs. The range can vary from a few percent 
to more than 50% depending upon the application and environment. These bugs enter 
the system at the earliest and leave it the last. 

Feature Bugs 

Specifications problems lead to respective feature problems. A feature can be wrong, 
missing or superfluous. A missing feature is the easiest to detect. A wrong feature 
could have major design impacts. Extra features were desirable. Free features are not 
actually “free” in the real sense. Any increase in generality that does not lead to 
reliability, modularity, maintainability and robustness should be suspected. 
Unnecessary enhancements can lead to security breaches and at the same time one 
cannot forbid the additional features as they could be a result of good design. 

Remedies for Specification and Feature Bugs 

Human-to-human communication problems contain deep rooted feature bugs. They 
can be reduced by using high-level, formal specification languages or systems. These 
languages and systems provide short term support but can prove to be really useful in 
the long run. 

Short-term support: Specification languages facilitate formalization of requirements 
and inconsistencies and ambiguity analysis. With formal specifications, partially to 
fully automatic test generation is possible. Users and developers of such products have 
found them to be cost-effective. 

Long-term support: The long term impact of the formal specification languages and 
systems will be that they would influence the design of ordinary programming 
languages so that more of current specifications can be formalized. Although this 
approach will reduce the bugs, it will not remove them completely. These bugs would 
be tougher and would need even higher specification systems to be exposed. 

Testing Techniques 

The testing of functional bugs can be done using the functional test techniques i.e. 
those techniques which are based on a behavioral description of software like 
transaction flow testing, syntax testing, domain testing, logic testing and state testing. 
They are also useful to test the requirements and specifications to an extent that the 
requirements can be expressed in terms of the model on which the technique is based. 

Check Your Progress 1 

 State whether the following statements are true or false: 

1. Correction cost includes the cost of correcting a bug and not its detection. 

2. Frequency of bugs does not depend upon application or environment. 

3. The requirements and specification bugs enter the system at an early stage 
and leave early too. 
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2.3.2 Structural Bugs 

Control and Sequence Bugs 

Control and sequence bugs result from left-out paths, unreachable code, improper 
nesting of loops, and missing steps in a process, rampaging GOTO’s, ill-conceived 
switches, etc. 

Majority of software testing and design literature focuses on bugs resulting from 
control flows but they do not occur commonly in new software. Because this area is 
open to theoretical treatment, it is popular in the literature. These bugs can be tested 
easily and caught during unit testing. 

Novice programmers cause more structural bugs than the experienced programmers. 
Also, old codes can be victims of more structural bugs. Thus, it is always reasonable 
to write new code from the scratch because the old program has become too 
complicated and arbitrary to be reworked upon. 

Control and sequence bugs can be caught with the help of structural testing techniques 
like path testing combined with bottom-line functional testing based on specification. 

Example: 

 i = 100; 
a = 20;  

 If (i < a) then 
  Print “i is less than a”; 
 Else 
  Goto label1: 
  : 

Label 2: j = i + 2; 

The above program is an example of control bug as the control is directed to ‘label 1’ 
in the else condition, however, there is no such label in the program. Thus the program 
control does not know where to go in the program as a result of the else condition 
satisfaction. 

Logic Bugs 

Bugs in the logic e.g. behavior of logical statements in combination with the logic 
operators, include non-existent cases, improper layout of cases, improper 
simplification and combination of cases, overlap of exclusive cases, etc. 

If these bugs are part of logical (Boolean) processing not related to control flow, then 
they are categorized as processing bugs. If they are a part of a logical expression 
which is used to direct the control flow, then they are categorized as control-flow 
bugs. 

Logic bugs are not different from arithmetic bugs. They are likelier than arithmetic 
bugs because programmers have less formal training in logic at an early age than they 
do in arithmetic. The best defense against these bugs is a systematic analysis of cases. 

Example: 
int money, money_in_store; 
int main() 
{ 
   do 
   { 
    printf("Enter amount of money (0 to exit): "); 
    scanf("%d", &money); 
    if (money_in_store == 0)//Should be'if(money== 0)' 
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         exit(0); 
      } 
      money_in_store += money; 
   } 
   while(1); 
  
   return 0; 
} 

This is an example of logical bug. After ‘scanf’, we are checking for ‘money_in_store’ 
instead of ‘money’. 

Processing Bugs 

Processing bugs include arithmetic, algebraic, mathematical function evaluation, 
algorithm selection, incorrect conversion from one data type to another and general 
processing. Other problems include overflow ignoring, ignoring the difference 
between positive and negative zero, improper use of greater-than, greater-than-or-
equal, less-than, less-than-or-equal, etc. 

These bugs are frequent and can be caught during the round of good unit testing. They 
have localized effects. The remedies for these types of bugs include selection of 
covering test cases and domain testing methods. 

Example: 
int y, e, z, m, p, f, g=0, k=2, D=0, n=0, d1, d[9], x[9]; 

printf("Please enter decimal number followed by base number. 
\n"); 

scanf("%d %d", &D, &n); 

/* Check if entered decimal no. is already in correct base */ 

y = D/n; 

if (y==0) 

{  

printf("Decimal no. %d has value of %d in base %d \n", D,D,n); 

 

} 

/* Digit-by-digit calculation of decimal no. in new base */ 

else 

{ while(y>0){  

y = D/(pow(n,k)); 

k+=1; 

} 

printf("No. of digits in final answer is %d \n", k-1); 

d1 = D / (pow(n,(k-1))); 

e = k-1; 

f = k-1; 

for (m=2, p=1; m=e, p=e-1; m++, p++) 

{  

z = pow(n,f); 

x[p] = D%z; 
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f-=1; 

d[m] = (x[p])/(pow(n,f)); 

} 

printf("Decimal number of %d has value of", D); 
 

The program causes a divide by zero error. ‘z’ has the values for each loop: 216->36 
->6->1->0. As ‘f’ becomes ‘-1’, the ‘pow(n,-1)’ return a Zero; 

Initialization Bugs 

Initialization bugs are common and both experienced programmers and testers should 
test them. Improper and superfluous initialization occurs. Although superfluous 
initialization appears to be less harmful but it can affect the performance. Typical bugs 
of this category are: forgetting to initialize working space, registers or data areas; a 
bug in the first value of a loop, wrong initialization to an improper format or data type, 
etc. 

Example: 
int a; 
char b = ‘x’; 
a = b; 

The program above gives an initialization error as we are trying to assign the value of 
a character type variable to an integer variable. 

The remedies to these are the kind of tools programmer has and the source language. 
Such bugs can be avoided by explicitly initializing all the variables being used in the 
program. 

Data-flow Bugs and Anomalies 

Most of the initialization bugs are special cases of the data flow anomalies. A data 
flow anomaly occurs when there is a path along which we expect to do something 
unreasonable with data e.g. using an uninitialized variable, attempting to use a 
variable before it exists, modifying data and not storing or using the result, etc. 
Although part of such anomalies can be detected by the compile time information 
much can be achieved only by executing and subjecting to tests. 

2.3.3 Data Bugs 

Data bugs are those which arise from the specification of data objects, their formats, 
the number of such objects and their initial value. They are as common as the code 
bugs but are often ignored. They are underestimated because of poor bug accounting. 
Because data bugs are not counted in some situations, the parts of the program which 
include data declaration statements are also ignored. The separation of code and data 
is artificial as they can be used interchangeably. In the extreme case, a single 20 line 
program can perform the task of a any computer and have all programs recorded as 
data and manipulated as such. 

Software is evolving towards programs in which more and more of the control and 
processing functions are stored in tables. This is called the third law.  

Third Law – Code migrates to data 

Because of this law, the awareness about the bugs in the code has increased. There is 
an awakening that the bugs in the code are only half the battle and that the data 
problems are equally important. Each of these has bug has a frequency of 25%.  
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Data declaration statements are equally prone to cause errors even though they are not 
executed and are specified by humans. 

The increase in the proportion of the source statements devoted to data definition is a 
direct consequence of the following: (1) the dramatic reduction in the cost of main 
memory and disc storage, and (2) the high cost of crating and testing software. 
Generalized software is not efficient. The increase in the cost of software as a 
percentage of system cost has resulted in shifting the emphasis from single-purpose, 
unique software to an increased reliance on a pre-packaged generalized program. 
These programs must satisfy a wide range of options, operating systems, computers, 
etc. This generalization is achieved by making the program more parameterized and 
then setting the values of these parameters for specific installations. 

Another source of increase in the database complexity is the use of control tables in 
place of code. Instead of being coded in the form of computer instructions or language 
statements, the steps required to process a transaction are stored as a sequence of 
constants in a transaction-processing table. The state of the currently executing 
transaction is stored in a transaction-control block. The combination of these two is 
used in the generalization of the transaction control process. The transaction-control 
table is a program which is processed interpretively by the transaction-control 
processor. In other words, a hidden programming language has been created. 

The first step in the avoidance of data bugs – whether the data is a pure data, 
parameters or hidden – is the realization that all source statements, including data 
declarations, must be counted, and that all source statements, whether or not they 
result in object code, are bug-prone. 

Dynamic versus Static 

Dynamic data is momentary irrespective of their purpose. Their lifetime is normally 
limited to the processing time of a transaction. They are stored in the storage objects. 
In case a shared object is not initialized properly, it can lead to data-dependent bugs 
caused by the residues from a previous use of that object by another transaction. Here, 
the culprit transaction is long gone before the bugs are discovered. Thus, the effects of 
a corrupt dynamic data can be far reaching and can be difficult to catch. The design 
remedy is the complete documentation of all shared memory structures, defensive 
code that goes through data validation checks, and centralized-resource managers. 

The basic problem is leftover garbage in a shared resource. This can be taken care of 
in any one of the following three ways: (1) cleanup after use by the user, (2) common 
cleanup by the resource manager, and (3) no cleanup. 

Static data is fixed in form and content. They appear in the source code or database 
directly or indirectly irrespective of their purpose. It need not be explicit in the code. 
Some languages have compile-time processing which is useful for general purpose 
routines that are particularized by interrelated parameters. It is an effective measure 
against parameter-value conflicts. Rather than relying on the programmer to calculate 
correct values of interrelated parameters, a program executed at the compile time takes 
care of it. If compile-time processing is not a language feature, a specialized processor 
can be built which calculates the parameter values. 

Another example is the preprocessing (or post-processing) code, any code executed at 
compile time or assembly time or before, at load time, at installation time, or some 
other time can lead to faulty static data and therefore bugs – even though such code 
does not represent object code at run time. 

The design remedy for the preprocessing situation is present in the source language, if 
it permits compile-time processing. This will eliminate the need of a specialized 
processor.  
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Information, Parameter and Control 

Static or dynamic data can serve in one role or a combination of roles: as a parameter, 
for control or for information. Constitution of control and information depends upon 
the perspective and can shift from one level to the other. 

Information is dynamic and tends to be local to a single transaction or task. Errors in 
information may not be serious bugs. The bugs could be a result of lacking data 
validations, failure to protect the code logic from data out of range or data in an 
incorrect format. Data validation related bugs can be avoided only by ensuring that the 
validations are included in the code. Not implementing data validation in a routine 
thinking that it would be done in another routine can often lead to forgetting to 
implement the validations at all. The program is developed and changed without 
remembering that the modified routine did the data validation for several other 
routines. Blocking the vulnerable data in a routine can save it from bad data and at the 
same time it’s even better to redesign the routine so that it does not remain vulnerable 
any more. 

Inadequate data validations lead to finger-pointing wherein the writer of calling 
routine often blames the writer of the called routine and vice versa. And they both 
together blame the operator. This attitude is understandable but not correct. Thus, even 
though a fellow programmer did thorough and correct validations, static data, 
parameters and code can get corrupted. 

Contents, Structure and Attributes 

Data specification comprises of three parts: 

 Contents: These are actual bit patterns, character string or number put into a data 
structure. Content is a pure bit pattern and holds no meaning unless it is 
interpreted by a hardware or software processor. All the data bugs result in the 
corruption or misinterpretation of content. 

 Structure: It is the size, shape and numbers which describe the data object, i.e. the 
memory location used to store the contents. Structures can have sub-structures and 
can be made into super-structures. 

 Attributes: They are the semantics associated with the contents of a data object 
i.e. the specification of the meaning e.g. an integer, subroutine, alphanumeric 
string, etc. 

2.3.4 Coding Bugs 

Coding bugs of or more kind can lead to bugs of the other kinds. Syntax errors are 
normally taken care of by themselves if the language translator has adequate syntax 
checking. A good translator can catch bugs related to undeclared data, undeclared 
routines, dangling code and other initialization problems. Programming errors caught 
by the translator does not affect the test design and execution drastically because 
testing cannot begin unless these errors are rectified. But a program having multiple 
source-syntax errors can have many logic and coding bugs. 

Coding bugs are wild-card of programming unlike the logic or process bugs which 
have their own perverse rationality. Wild-cards are arbitrary. The most common kind 
of coding bugs are documentation bugs which are often ignored considerably. 
Documentation bugs could be as simple as spelling mistakes, misleading or erroneous 
comments, etc. Although they appear to be small but they cannot be ignored because 
its consequences could be as big as any coding errors. Such bugs can also lead to 
incorrect maintenance actions and thus cause insertion of other bugs. 
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Example: 

In the user manual of MS Word, a line in the “How to insert an image from your hard 
disk in a word document” reads  

“To insert an image inside a word document, click on Insert -> Pictures -> from 
internet”  

However, actually it must read 

“To insert an image inside a word document, click on Insert -> Pictures -> from file on 
disk”  

This can cause a confusion to a new user who is using this feature of the MS word for 
the first time. 

Thus, one needs to be very careful while creating documents and manuals pertaining 
to software and products for its users. 

2.3.5 Interface, Integration and System Bugs 

External Interfaces 

External interfaces are the means to communicate with the outside world. These could 
be devices, actuators, sensors, input terminals, printers and communication lines. The 
primary design criterion for interfaces should be its robustness. These interfaces must 
employ a protocol. Protocol could be complicated and difficult to follow. Protocol 
itself can be wrong if it’s new or could be wrongly implemented. Other external 
interface errors are misunderstanding external input and output formats, insufficient 
tolerance to bad input data, etc. 

Internal Interfaces 

In principle, internal interfaces are not different from external interfaces but they do 
differ in practice as the internal environment is more controlled. The external 
environment is fixed and the system must adapt to it but the internal environment can 
be negotiated as it consists of interfaces to other components as well. Internal 
interfaces can have the problems of the external interfaces as well of their own like 
those related to the implementation details. The real remedy is the design and in 
standards. They must not be allowed to grow just like that. They should be formal and 
as few as possible. The number of different internal interfaces can be traded-off with 
the complexity of a single internal interface. 

Hardware Architecture 

Software bugs related to hardware crop up from the misunderstanding of how does the 
hardware works. Examples of such bugs are as follows: I/O device operation or 
instruction error, I/O device address error, wrong format expected, data format wrong 
for device, device protocol error, waiting too long for a response, incorrect interrupt 
handling, ignoring hardware fault or error condition, ignoring operator malevolence, 
assuming that the device has been initialized. 

The remedy for hardware architecture and interface problems is two fold: (1) good 
programming and testing and (2) centralization of hardware interface software in 
programs written by hardware interface specialists. Modern hardware is difficult to 
test as it lesser buttons, switches and lights but cheaper. This paradox can be resolved 
by hardware that has special test modes and test instructions that do what the buttons 
and switches do. However, such features are yet to be provided by the hardware 
manufacturers. Or it could also be advisable to use a hardware simulator instead of the 
actual hardware. 
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Operating System 

Program bugs related to the operating system are a combination of hardware 
architecture and interface bugs, mostly caused by the misunderstanding of what the 
operating system does. And an OS could have the bugs of its own. Often an OS may 
lull the programmer that the hardware interface errors have been addressed by it. As 
the operating system gets old its bugs are found and corrected but some of these 
corrections may leave peculiarities.  

The remedy for the OS interface bugs is the same as for hardware bugs; use OS 
interface specialists and use explicit interface modules or macros for all operating 
system calls. This approach may not eliminate all bugs but at least will localize them 
and make testing easier. 

Software Architecture 

Software architecture bugs are those which are often termed as “interactive”. Routines 
can pass the unit and integration testing without revealing such bugs. Many of them 
depend on load and their symptoms emerge only when the system is stressed. They 
tend to be the most difficult kind of bugs to find unearth. Examples of the causes of 
such bugs are: failure to open or close an interlock, assumption that a called routine is 
resident or not resident, assumption that registers or memory were initialized or not 
initialized, assumption that register or memory location content did not change, local 
settings of global parameters and global setting of local parameters. 

The first line of defense against these bugs is the design for the software architecture. 
All testing techniques are applicable to the discovery of software architecture bugs, 
but experience has shown that careful integration of modules and subjecting the final 
system to a brutal stress test are especially effective. 

Check Your Progress 2 

 1. Fill in the blanks: 

 (a) Control and sequence bugs can be caught with the help of .......... testing. 

 (b) Logic bugs are similar to ........................ bugs. 

2. State whether the following statements are true or false: 

  (a) Processing bugs do not have localized effects. 

  (b) It is not easy to separate data and code. 

Control and Sequence Bugs 

System level control and sequence bugs include: ignored timing, assuming that events 
occur in a specified sequence, starting a process before its prerequisites are met, 
waiting for an impossible prerequisite to be met, specifying a wrong priority, program 
state or processing level, etc. 

The remedy for these bugs is in the design. Highly structured sequence control is 
helpful. Specialized, internal, sequence – control mechanisms, such as internal job 
control language, are useful. 

Integration Bugs 

Integration bugs are those that come into being with the integration of and with the 
interfaces between, presumably working and tested components. Most of these bugs 
result from inconsistencies or incompatibilities between components. These bugs are 
hosted in the methods used to transfer data directly or indirectly between components 
and all methods by which components share data. The communication methods 
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include data structures, call sequences, registers, semaphores, communication links, 
protocols, etc. Although these bugs do not constitute a big category of bugs but are an 
expensive category because they are caught late and force changes in other 
components. These bugs can be revealed using domain testing, syntax testing and 
data-flow testing. 

System Bugs 

System bug comprises of all those bugs that cannot be ascribed to components or to 
their simple interactions, but result from the totality of interactions between many 
components like programs, data, hardware and the OS. These can be revealed with the 
help of transaction-flow testing techniques but two factors however, should be kept in 
mind: (1) all test techniques can be useful at all levels, from unit to system and  
(2) there can be no meaningful system testing until there has been thorough 
component and integration testing. System bugs are not frequent but very expensive as 
they are caught after the system has been fielded and because the fix is rarely simple. 

2.3.6 Test and Test Design Bugs 

Testing 

Testers are not immune to bugs. System tests require complex scenarios and 
databases, code or equivalent to execute and thus, can have bugs. The virtue of 
independent functional testing is that it provides an unbiased point of view but this 
provides an opportunity for different and possibly incorrect interpretations of the 
specifications. Test bugs are not software bugs but are difficult to be separated from 
them. 

Test Criteria 

Test criteria are used to judge whether the software’s behavior is incorrect or 
impossible. The more complicated the criterion the likelier it is to have bugs. 

Remedies 

The remedies for test bugs are; test debugging, test quality assurance, test execution 
automation and test design automation. 

 Test Debugging: The first remedy for test bugs and debugging is testing and 
debugging the tests. Test debugging is usually easier because tests when properly 
designed are simpler than programs and do not have to make concessions to 
efficiency. Also, tests tend to have a localized impact relative to other tests and 
therefore the complicated interactions that usually plague software designers are 
less frequent. 

 Test Quality Assurance: Programmers have the right to ask how quality in 
independent testing and test design is monitored. Should we implement test testers 
and test-tester tests? This sequence does not converge. 

 Test Execution Automation: Test execution bugs are virtually eliminated using 
various test execution automation tools. Manual testing is self-contradictory. Bugs 
cropping up due to manual testing can be reduced by using test execution 
automation. 

 Test Design Automation: For a given productivity rate, automation reduces bug 
count – be it for software or be it for tests. 
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2.3.7 Testing and Design Styles 

Bad designs lead to bugs and are difficult to test; therefore, the bugs remain. Good 
designs inhibit bugs before they occur and are easy to test. The two factors are 
multiplicative, which explains the productivity difference. The best test techniques are 
useless when applied to abominable code; it is sometimes easier to redesign a bad 
routine than to attempt to create tests for it. The labor required producing new code 
and design for the new code is much lesser than the labor required to design thorough 
tests for an undisciplined, unstructured monstrosity. Good testing works best on good 
code and good designs. 

2.3.8 Memory related Bugs 

Memory related bugs are caused due to improper handling of the memory objects. 
These bugs can be used to cause security breaches in software. These bugs are the 
biggest contributors to all vulnerabilities of software. They can be further classified as 
under: 

 Buffer overflow bugs: They are caused when we try to access the allocated 
memory beyond the buffer boundary. 

 Stack smashing: These bugs are caused when we illegally overwrite the function 
return address. 

 Memory leak: These bugs are caused when we are not able to access a 
dynamically allocated memory to free it. 

 Uninitialized read: These bugs occur when we try to read a memory data before it 
is initialized. 

 Double free: These bugs occur when we try to free an already freed memory 
location. 

Example: 

int main(void) 

{ 

     /* this is an infinite loop calling the malloc 
function which 

      * allocates the memory but without saving the 
address of the 

      * allocated place */ 

 while (malloc(50)); /* malloc will return NULL 
sooner or later, due to lack of memory */ 

     return 0; /* Did not free the allocated memory at 
all before returning */ 

} 

The C function above deliberately leaks memory by losing the pointer to the allocated 
memory. Since the program loops forever calling the defective function, malloc(), but 
without saving the address, it will eventually fail (returning NULL) when no more 
memory is available to the program. Because the address of each allocation is not 
stored, it is impossible to free any of the previously allocated blocks. 

2.3.9 Concurrent Bugs 

Concurrent bugs are those that can occur only in multi-threading or multi-process 
environment. They are caused because of the bad synchronization of the operations of 
multiple threads. These bugs are un-deterministic in nature which makes them 
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difficult to reproduce. Such temporary sensitivity makes the bug detection more 
difficult. They can be classified as below: 

 Datarace bugs: They occur because of the conflicting access from concurrent 
threads when they try to use the same shared memory in different orders. 

 Atomicity related bugs: These are caused when a bunch of operations from a 
single thread are unexpectedly interrupted by a conflicting operation from some 
other threads. 

 Deadlock: In resource sharing, one or more processes wait indefinitely for some 
resource to get free and cannot proceed further, thus, leading to a deadlock. 

Example: 
   object lockA = new object(); 

object lockB = new object(); 
 
// Thread 1 
void t1() { 
  lock (lockA) { 
    lock (lockB) { 
      /* ... */ 
    } 
  } 
} 
 
// Thread 2 
void t2() { 
  lock (lockB) { 
    lock (lockA) { 
      /* ... */ 
    } 
  } 
} 
a 

To further illustrate how a deadlock might occur, imagine the following sequence of 
events:  

 Thread 1 acquires lock A. 

 Thread 2 acquires lock B. 

 Thread 1 attempts to acquire lock B, but it is already held by Thread 2 and thus 
Thread 1 blocks until B is released. 

 Thread 2 attempts to acquire lock A, but it is held by Thread 1 and thus Thread 2 
blocks until A is released. 

At this point, both threads are blocked and will never wake up. 
 

2.4 LET US SUM UP 

The importance of a bug is dependent on its occurrence frequency, the correction cost, 
the consequential cost and the application. Thus, the testing resources must be 
allocated in proportion to the importance of the bugs. 

Effectiveness of the testing techniques depends upon the target. The test techniques 
must be best suited to the kind of bugs you have. The effectiveness of the test 
techniques erodes with time. A comprehensive bug classification is a prerequisite to 
gathering useful bug statistics. Adopt taxonomy, simple or elaborate, but adopt one 
and classify all bugs within it. 
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1. What are control and sequence bugs and how are they minimized? 

2. How are the internal interface bugs different from external ones? 

3. Define contents, structure and attributes in the light of data specification. 

4. What is the third law in context of data bugs? Explain in detail. 

2.6 KEYWORDS 

OS: Operating System 

External interfaces: External interfaces are the means of a program to communicate 
with the outside world. 

Data bugs: Data bugs are those which arise from the specification of data objects, 
their formats, the number of such objects and their initial value. 

Data flow anomaly: A data flow anomaly occurs when there is a path along which we 
expect to do something unreasonable with data. 

2.7 QUESTIONS FOR DISCUSSION 

1. Explain the structural bugs in detail mentioning all the different bugs which form 
part of it. 

2. Discuss the various bug consequences in detail. 

3. How can we measure the importance of a bug? Give a mathematical formula to 
measure the same. 

 Check Your Progress: Model Answers 

 CYP 1 

 1. True 

 2. False 

 3. False 

 CYP 2 

 1. (a) structural 

  (b) arithmetic 

 2. (a) False 

  (b) True 

2.8 SUGGESTED READINGS 
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3.0 AIMS AND OBJECTIVES 

After studying this lesson, you would be able to understand:  

 Testing objectives, principles and testability 

 How to design the test cases 

 How to conduct white-box and black-box testing 

3.1 INTRODUCTION  

Software testing is a critical element of software quality assurance and resents the 
final review of specification, design, and code. The source-code once generated needs 
to be tested for bugs and defects to get rid of maximum errors before the software is 
sent to the customer. Test cases are designed with an aim to find errors. 
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During initial stages of testing, a software engineer performs all the tests. However, at 
later stages a specialist may be involved. Tests must be conducted to find the highest 
possible number of errors, must be done systematically and in a disciplined way. 
Testing involves checking both the internal program logic and the software 
requirements. 

3.2 TESTING FUNDAMENTALS 

Testing software can be considered as the only destructive (psychologically) step in 
the entire life cycle of software production. Although all the initial activities aimed at 
building a product, the testing is done to find errors in software.  

3.2.1 Objectives of Testing 

 Executing a program in order to find errors. 

 A good test case is the one that has a high probability of finding an undiscovered 
error. 

 A successful test is the one that reports an as–yet undiscovered error. 

The objective while designing tests is to come up with the test cases that 
systematically uncover different classes of errors in minimum possible time and effort. 

3.2.2 Benefits of Testing 

 It reveals the errors in the software. 

 It ensures that software is functioning as per specifications and it meets all the 
behavioral requirements as well. 

 The data obtained during testing is indicative of software reliability and quality as 
a whole. 

 It indicates presence of errors and not absence of errors. 

3.2.3 Testing Principles 

Before coming up with ways to design efficient test cases, one must understand the 
basic principles of testing: 

 Test cases must be traceable to requirements: Because software testing reveals 
errors, so, the severe defects will be those that prevent the program from acting as 
per the customer’s expectations and requirements. 

 Test planning must be done before beginning testing: Test planning can begin 
soon after the requirements specification is complete and the detailed test cases 
can be developed after the design has been fixed. 

 Pareto principle applies to software testing: Pareto principle states that  
80 percent of the uncovered errors during testing will likely be traceable to  
20 percent of all the program components. Thus, the main aim is to thoroughly 
test these 20 percent components after identifying them. 

 Testing should begin with small and end in large: The initial tests planned and 
carried out are usually individual components and as testing progresses the aim 
shifts to find errors in integrated components of the system as whole rather than 
individual components. 

 Exhaustive testing is impossible: For a normal sized program the number of 
permutations of execution paths is very huge. Thus, it is impossible to execute all 
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the combinations possible. Thus, while designing a test case it should be kept in 
minds that it must cover the maximum logic and the component-level design. 

 Efficient testing can be conducted only by a third party: The highest probability 
of finding errors exists when the testing is not carried by the party which develops 
the system. 

A program developed should be testable i.e. it should be possible to test the program. 
The testability of a program can be measured in terms of few properties like: 
operability, observability, controllability, decomposability, simplicity, stability, 
understandability, etc. 

The test also, must also comply with the characteristics of a good test case. These 
characteristics are mentioned here: 

 The probability of finding error should be high. In order to achieve this, tester 
must understand the actual functionality of the software and think of a suitable 
condition that can lead to failure of the software. 

 A test case must be non-redundant. Because the testing time and resources are 
limited, it will waste a lot of time to conduct the same test again and again. Every 
test must have a distinct purpose. 

 A test case must be of the best quality. In a group of similar test cases, the one that 
covers the maximum scenarios to uncover maximum errors should only be used. 

 A good test case should neither be too simple nor too complex. A complex test 
that includes several other tests can lead to masking of errors. Thus, each test case 
should be executed separately. 

3.3 TEST CASE DESIGN 

The designing of tests for software can be as challenging as the initial design of the 
product itself. Thus, software engineers must design test cases that have highest 
probability of finding defects within minimum time and effort. 

A lot of methods exist to design test cases. These methods ensure systematic 
development of test cases, completeness and highest likelihood of finding errors. 

A product can be tested in two ways: 

1. Knowing the specified function that a product has been designed to perform; tests 
can be done to ensure that these functions are existing and that too without errors. 

2. Knowing the internal workings of a product the tests can be performed to ensure 
that all the internal operations are being performed as per specifications and all 
internal components have been adequately built.  

The first approach is called black-box testing and the second, white-box testing. 

Black-box testing of software refers to tests that are conducted at the software 
interfaces. These kinds of tests ensure that software functions are operational, input is 
accepted properly and output is correctly produced and that the external information 
e.g. database is maintained. It does not deal in depth with the internal logic of the 
program. 

White-box testing works on the principle of closely monitoring the procedural details 
of the software. All the logical paths of the software are tested using test cases for 
specific conditions and loops. The actual results are compared with the expected 
results to ensure that the correct results are produced as a result of the functions being 
performed. 
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The quality of the test cases or their appropriateness should be such that it can check 
the quality of the system being tested. Thus, it requires clearly distinguishing of the 
object that must be tested and structuring the different dimensions of test case quality 
using the available documents and artifacts from different phases of the development 
process. The object being considered for quality evaluation can be either a single test 
case or a set of test cases i.e. test suite. The quality assessment of a single test case 
would be different from that of a test suite.  

 

 

 

              

    

 

 

 

 

Figure 3.1: Typical Test Case Information 

A typical test case must have the attributes defined in Figure 3.1 for its identification. 
The test case ID allows us to identify the test case uniquely, purpose defined the 
objective of the test case, preconditions refer to the conditions that must be satisfied 
beefier the test case is actually satisfied, inputs refer to the inputs which should be 
made to the test case at the time of execution, expected output is the output generated 
as a result of execution of test case which conforms to the software design. Fields like 
date, version and ‘run by’ are generic in nature for all the test cases belonging to a 
particular test suite. 

Check Your Progress 1 

State whether the following statements are true or false: 

1. Testing indicates presence of errors and not absence of errors. 

2. A test case must be designed to cover the minimum logic and component-
level design. 

Version 

Run by

Result 

Date 

Execution History 

Post-conditions 

Expected outputs 

Inputs 

Pre-conditions 

Purpose 

Test Case ID 

3.4 WHITE-BOX TESTING 

White-box testing or glass-box testing is a test case design method that uses the 
control structure of the procedural design to obtain test cases. Using this methodology, 
a software engineer can come up with test cases that: 

1. Guarantee that all independent paths within a module have been exercised at least 
once 

2. Exercise all the logical decisions based on their true and false sides 

3. Executing all loops at their boundaries and within them 

4. Exercise internal data structures to ensure their validity. 
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The reason of conducting white-box testing largely depends upon the nature of defects 
in software: 

 Logic errors and incorrect assumptions are inversely proportional to the 
probability that a program path will be executed. 

 We often believe that a logical path is not likely to be executed when, in fact, it 
may be executed on a regular basis. 

 Typographical errors are random. 

Each of these reasons provides an argument for conducting white-box tests. Black-box 
testing might miss out these kinds of errors. A number of methods are associated with 
structural testing which are discussed in detail in section 3.5. 

3.5 BLACK-BOX TESTING 

Black-box testing or behavioral testing, mainly focuses on the functional requirements 
of the software. It enables the software engineer to develop a set of inputs that can 
fully involve all the functional requirements for a program. It is not an alternative 
approach to white-box testing. Rather, it completes the testing by uncovering different 
types of errors than the white-box approach. 

 

System Input test data Output test data 

 Figure 3.2: Black-box Testing 

As shown in Figure 3.2, in black-box testing, the software is considered as a black box 
whose internal structure is not known. This box is fed with relevant inputs to generate 
the output data. This output data obtained is then checked against the design to ensure 
that it is as per software specification. 

This approach attempts to find errors in the following categories:  

1. Incorrect or missing functions 

2. Interface related errors 

3. Errors in data structures or database accesses 

4. Performance related errors 

5. Initialization and termination errors. 

This technique is applied at a later stage unlikely to the white-box testing approach. 
Using this technique, we can arrive at test cases that satisfy the following criteria: 

1. Test cases that reduce the total test cases by a large quantity to achieve reasonable 
testing, 

2. Test cases that tell us something about the presence or absence of a variety of 
errors rather than a particular kind of error. 

The techniques are as below: 

3.5.1 Boundary Value Analysis 

The art of testing is to come up with a small set of test cases such that the chances of 
detecting an error are maximized while minimizing the chances of creating redundant 
test cases that uncover similar errors. It has been observed that the probability of 
finding errors increases if the test cases are designed to check boundary values. 
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Consider a function F with x and y as two input variables. These inputs will have 
some boundaries: 

a<=x<=b 

p<=y<=q 

Hence, inputs x and y are bounded by two intervals [a,b] and [p,q] respectively. For x, 
we can design test cases with values a and b, just above a and b and just below a and b 
which will have higher chances to detect errors. Similar is the case for y. This is 
represented in the Figure 3.3. 

 
x 

y 

a b 

p 

q 

Figure 3.3: Input Domain of a Function of two Variables 

Boundary value test cases are obtained by keeping one variable at its extreme and the 
other at its nominal value. At times we might want to check the behavior when the 
value of one variable exceeds its maximum. This is called robustness testing. We may 
also include test cases to check what happens when more than one variable have 
maximum values. This is called worst case analysis. Using prior testing knowledge 
and experience to test similar programs is called ad-hoc testing. 

3.5.2 Equivalence Class Testing 

In this method of testing, input domain of a program is divided into a finite number of 
equivalence classes such that the test of a representative value of each class is 
equivalent to a test of any other value, i.e. if a test in a class detects one error all other 
test cases belonging to the same class must detect the same error. Also, if a test case in 
a class did not detect an error the other test cases of the same class also should not 
detect the error. This method of testing is implemented using the following two steps: 

1. The equivalence class is identified by taking each input condition and dividing it 
into valid and invalid classes. 

2. Developing test cases using the classes identified. This is done by writing test 
cases covering all the valid equivalence classes and a single case for invalid 
equivalence class. 

Again good test cases will be those that check for boundary value condition. 
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Check Your Progress 2 

1. State whether the following statements are true or false: 

(a) Using White-box testing, a software engineer can come up with test 
cases that guarantee that all independent paths within a module have 
been exercised at least once. 

(b) Black-box testing is an alternative approach to white-box testing. 

2. Fill in the blanks 

(a) ………..…… of software refers to tests that are conducted at the 
software interfaces. 

(b) White-box testing is also known as ……………………. 

(c) Using prior testing knowledge and experience to test similar programs 
is called …………………… 

3.5.3 Decision Table-based Testing 

Decision tables are useful for describing situations in which a number of combinations 
of actions are taken under varying sets of conditions. There are four parts of a decision 
table namely, Condition stub, Action stub, Condition entries and Action entries. These 
are described in Figure 3.4. 

Entry 

True False 

True False True False 

Condition Stub 

C1 

C2 

C3 True False True False True  False - 

X X   X   

X  X   X  

 X   X   

Action Stub A1 

A2 

A3 

A4    X  X X 

Figure 3.4: Decision Table Terminology 

The decision table given in Figure 3.4 has three conditions C1, C2 and C3 each of 
which could be either true or false. Based upon the values of these conditions, the 
actions A1, A2, A3 and A4 would be taken. The combination of the values of the 
conditions C1, C2 and C3 decide the action that would be taken as a result. 

To develop test cases from decision tables, we treat conditions as input and actions as 
outputs. Sometimes conditions end up referring to equivalence classes of inputs, and 
actions refers to major functional processing portions of the item being tested. 

3.5.4 Cause Effect Graphing Technique 

One drawback of boundary value analysis and equivalence partitioning is that these 
they do not explore combinations of input circumstances which may result in 
interesting conditions. These situations must be tested. If we consider all possible 
valid combinations of equivalence classes, then it results in a large number of test 
cases, many of which may not uncover any undiscovered errors. 

This technique helps in selecting, in a systematic approach, a high-yield set of test 
cases. It is also useful in pointing out incompleteness and ambiguities in the 
specifications. The following steps are used to derive test cases: 
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1. The causes and effects are identified. A cause is a distinct input condition and 
effects are output conditions or a system transformation. These are identified by 
reading the specification and identifying the words or phrases that describe causes 
and effects. Each cause and effect is assigned a unique number. 

2. The semantic content of specification is studied and transformed into a Boolean 
graph linking the causes and effects. This is the cause effect graph. 

3. The graph is annotated with constraints describing combinations of causes and/or 
effects that are impossible because of syntactic or environmental constraints. 

4. By methodically tracing state conditions in the graph, the graph is converted into a 
limited entry decision table. Each column in the graph represents a test case. 

5. The columns in the decision table are converted into test cases. The basic notation 
for the graph is shown in Figure 3.5. 

 

Figure 3.5: Basic Cause Effect Graph Symbols 

As given in Figure 3.5, the cause-effect symbol for an identity is such that 
corresponding to a cause there would be one effect. In case of a not, the effect would 
be the inverted value of the cause, i.e. for c1 = 0, e1 = 1 and for c1 = 1, e1 = 0. For an 
OR cause-effect graph, the value of e1 would be either of the input causes, i.e. c1, c2 
and c3 in this case. Even if one of the values of c1, c2 or c3 is 1, e1 would be 1. For the 
cause-effect graph of AND, the value of e1 is the result of c1 AND c2, i.e., for e1 = 1 
both c1 and c2 necessarily have to be 1. If either of c1 or c2 is 0, e1 would result in 0. 

Think of each node as having values either 0 or 1, where 0 represents the ‘absent state’ 
and 1 represents the ‘present state’. The identity function states that if c1 is 1, e1 is 1; 
else e1 is 0. The NOT function states that if c1 is 1, e1 is 0 and vice versa. The OR 
function states that if c1 or c2 or c3 is 1, e1 is 1 else e1 is 0. The AND function states 
that if both c1 and c2 are 1, e1 is 1 else e1 is 0. The AND and OR functions can have 
any number of inputs. 

3.6 LET US SUM UP 

The primary objective of test case design is to derive a set of tests that have the 
highest probability for fining errors in the software. To accomplish this, two different 
categories of test case design are possible: white-box testing and black-box testing. 
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White-box tests focus on the program control structure. Test cases are developed 
ensuring that all the statements in the program are executed at least once while testing 
and that all logical conditions are checked. It makes use of various techniques like 
path testing, condition and data flow testing. 

Black-box tests are designed to validate the functional requirements without 
considering the internal workings of a program. It focuses on the information domain 
of the software, deriving test cases by dividing input and output domain of a program 
in such a way that is provides 100% coverage. The various techniques used are 
equivalence partitioning, boundary value analysis, etc. 

3.7 LESSON END ACTIVITIES 

1. What are the objectives of testing? Why is the psychology of a testing person 
important? 

2. What drawbacks of boundary value analysis and equivalence partitioning are 
covered by cause effect graphing technique? 

3.8 KEYWORDS 

Robustness testing: Checking the behavior when the value of one variable exceeds its 
maximum is called robustness testing. 

Worst case analysis: Testing by including test cases to check what happens when 
more than one variable have maximum values is called worst case analysis.  

Ad-hoc testing: Testing using prior testing knowledge and experience to test similar 
programs is called ad-hoc testing. 

Black-box testing or behavioral testing: Black-box testing of software refers to tests 
that are conducted at the software interfaces.  

White-box testing or glass-box testing: White-box testing is a test case design method 
that uses the control structure of the procedural design to obtain test cases. 

Pareto principle: Pareto principle states that 80 percent of the uncovered errors during 
testing will likely be traceable to 20 percent of all the program components. 

3.9 QUESTIONS FOR DISCUSSION 

1. Does exhaustive testing ensure that a program is 100% correct? 

2. Discuss the difference between worst case and ad-hoc test case performance 
evaluation method of testing. 

3. Differentiate between black-box testing and white-box testing. 

4. List down the various testing principles. 

 Check Your Progress: Model Answers 

 CYP 1 

 1. True 

 2. False 

 

 

Contd…. 
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 CYP 2 

 1. (a) True 

  (b) False 

 2. (a) Black-box testing 

  (b) Glass-box testing 

  (c) Ad-hoc testing 
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After studying this lesson, you would be able to understand:  

 Basics of path testing – motivation and assumptions, loops, control flow-graphs, 
effectiveness of path testing, etc. 

 Predicates, path predicates and achievable paths, testing blindness and predicate 
expressions 

 Path sensitizing – achievable and non-achievable paths, pragmatic observations 
and path instrumentation 

 Implementation and application of path testing – new code, maintenance,  
re-hosting 

4.1 INTRODUCTION  

Path testing is the cornerstone of testing as it is based in the used of the program’s 
control flow as a structural model. In this lesson we will discuss in detail the methods 
of generating tests from the program’s control flow, criteria for selecting path, and 
how to determine path-forcing input values. 

4.2 PATH TESTING BASICS 

4.2.1 Motivation and Assumption 

Path testing is the name given to the family of the testing techniques based on 
judiciously selecting a set of test paths through a program. Some measure of test 
thoroughness is achieved if the set of test paths is correctly chosen, e.g. pick up those 
paths which ensure that every statement has been executed at least once. 

Path testing is one of the oldest techniques of structural testing. Every person who 
examines software testing in depth wants to cover each statement and branch at least 
once under some test. This technique was the first to come under theoretical scrutiny. 

It is the most applicable to new software for unit testing. It is a structural technique 
which requires complete knowledge of the structure of the code. It is normally used by 
the programmers to unit test their own code. The effectiveness of this technique 
deteriorates as the size of the software increases. It is rarely used for system testing. 

The Bug Assumption 

 The bug assumption for path-testing strategies is that something has gone wrong 
with software that makes it take a different path than the desired, e.g. ‘GOTO X’ 
where ‘GOTO Y’ was intended. 

 We assume that the specifications are correct and achievable, that there are no 
processing bugs other than those that affect the control flow, and that data is 
properly defined and accessed. 

Structured programming languages prevent many of the bugs targeted by path testing 
for these languages are reduced. Consequently, old code has a higher proportion of 
control flow bugs than contemporary code and for such software path testing is 
indispensable e.g. Assembly languages like COBOL, Basic and FORTRAN. 

4.2.2 Control Flow-graphs 

The control flow-graph (or flow-graph) is a graphical representation of a program’s 
control structure. It uses the elements as shown is Figure 4.1: process blocks, 
decisions and junctions. It is similar to the flowchart. 
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Do Process A 

Is A<B? 

1 2 

2 

N 

1  

Process 

Decisions 

Junctions 

Case 
Statements 

Yes: Do this

No: Else do this

Figure 4.1: Flow-graph Elements 

Process Block 

A process block is a sequence of statements which do not contain any decision or 
junctions. Thus, in a process block, if one statement is executed, all the thereof will be 
executed. It can have one or hundreds of statements. Once a process is initiated, every 
statement contained within it will be executed and no statement within it will be a 
target for a GOTO statement. 

A process has one entry and exit but one/multiple statement or instruction, a macro or 
a function call or a sequence of these. Thus, while designing test cases using a control 
flowgraph, it is not required to go into the details of the operations of the block. Even 
if a process affects the control flow, it will be manifested at the subsequent decision or 
case statement. 

Decisions and Case Statements 

A decision is a point in a program at which the control flow can diverge, e.g. 
conditional branch and skip statements. Majority of the decision statements are binary 
or two-way, but some are three way also. Test case designing for two-way conditions 
is easier than that of three-way conditions. A case statement is an example of a 
multiple way branch or decision. 

Junctions 

A junction is a point in the program where the control can merge, e.g. labels of a 
GOTO statement, END-IF and CONTINUE statements, etc. 
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Unconditional jumps or branches are not fundamental to programming. Although such 
statements are not essential to programming, their use can be avoided. Testing of such 
programs is also difficult as is the test designing. 

Control Flowgraphs versus Flowcharts 

The control flow graph resembles the flowchart of the program but differs in one way. 
We don’t show details of what is their in a process block in a control flowgraph. A 
process-block is shown as a single block no matter the number of statements it 
comprises of internally. Conversely, in a flowchart, every statement of the process 
block is drawn. The flowchart focuses on process steps whereas the control flowgraph 
ignores these. The flowchart forces an expansion of visual complexity by adding 
multiple off-page connectors which confuse the control flow, but the flowgraph 
compresses the representation and makes it easier to flow. 

Thus, the practice of drawing a flowchart may not be an effective design process but 
the act of drawing a flowgraph helps us to clarify the control flow and data flow 
related issues. 

4.2.3 Notational Evolution 

A control flowgraph is a simplified representation of a program’s structure. We will 
take the example of a program (in Figure 4.2) to understand the same. 

INPUT A, B 
X = A + B 
Y = A - B 
IF X > 0 GOTO LABEL1 

 LABEL2: X = X – 1 
 LABEL1:X = X + Y 
                     END 

Figure 4.2: Program Example 

 
INPUT X,Y

U = Z Z = U

V(U – 1) = V(U + 1) + U(V – 1) V(U + U(V)) = U + V

U = U + 1Z = Z - 1 U = U + 1

Z = Z + VZ = Z - 1

Z >= 0 ?

U > V ?U = V ?

U = Z ?Z = 0 ?

SAM

JOE

ENDYY

ELL

SAMJOE LOOP

YES

NO

NO NO

YES

NO

YES

NO YES

YES
NO

Z = X + Y Z = X + Y

U = 0

LOOP V(U) = (Z + V) + U U(V) = (Z + V) + U V(U) = 0 ? JOE

LOOP

XX

XX

 

 Figure 4.3: One-to-One Flowchart for Figure 4.2 Example 
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Figure 4.3 depicts the one-to-one for this program. Note that the complexity has 
increased and clarity has decreased. 

In Figure 4.4, we have merged all the steps into a single process block. We now have 
a control flowgraph. But this notation is still complex and we have reduced it to 
achieve Figure 4.5. This is the actual representation of a control flowgraph. We have 
done a few notational changes in order to come up with this notation. 

PROCESS 1

PROCESS 10 PROCESS 11

PROCESS 9 PROCESS 8

PROCESS 6PROCESS 5

PROCESS 7

PROCESS 4PROCESS 3

PROCESS 2Z >= 0 ?

U > V ?U = V ?

U = Z ?Z = 0 ?

V(U) = 0 ?

JOE

JOE

ENDYY

ELL

LOOPSAM

SAMNO

YES

YES

NO

NO

YES

NO

YES

NO YES

YES

NO

 

 Figure 4.4: Control Flowgraph for Figure 4.3 
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89101112132

76543

 

Figure 4.5: Simplified Flowgraph Notation 

To do so we made several notational changes. 

1. The process boxes aren’t needed. There is an implied process at the junction of 
every line and decisions. 

2. We need not know the specifics of the decisions, just the fact that there is a branch 
are sufficient. 

3. The specific names of the target are not important but just the fact that they exist. 
So they can be replaced by simple numbers. 
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There are two kinds of components: circles and arrows joining these circles. A circle 
with more than one arrow leaving is a decision; a circle with more than one arrow 
entering is a junction. We call the circles nodes and the arrow links. Entry and exit are 
also considered as nodes. Numbering of the nodes is done as per the original program 
labels. The link name can be formed from the names of the nodes it spans, e.g. the link 
between node 4 and 7 is denoted as link (4, 7). An alternate to this technique is to use 
a lowercase character to denote each link.  

 

 Figure 4.6: Even Simpler Flowgraph Notation 

The final transformation is shown in Figure 4.6 where we have removed the node 
numbers to achieve an even simpler notation. This can be further reduced to the 
linked-list notation as shown in Figure 4.7. 

1 (BEGIN) : 3 
2 (END) :  
3 (Z>0?) : 4 (FALSE) 
  : 5 (TRUE) 
4 (JOE) : 5 
5 (SAM) : 6 
6 (LOOP) : 7 
7 (V(U)=0?) : 4 (TRUE) 
  : 8 (FALSE) 
8 (Z=0?) : 9 (FALSE) 
  : 10 (TRUE) 
9 (U=Z?) : 6 (FALSE) = LOOP 
  : 10 (TRUE) = ELL 
10 (ELL) : 11 
11 (U=V?) : 4 (TRUE) = JOE 
  : 12 (FALSE) 
12 (U>V?) : 13 (TRUE) 
  : 13 (FALSE) 
13  : 2 (END) 

Figure 4.7: Linked-List Control Flow Graph Notation 

4.2.4 Path Testing 

Paths, Nodes and Links 

A path is a sequence of instructions or statements that start at an entry, junction or 
decision and at another or same entry, junction or decision, or exit, through a program. 
A single process, junction or decision may be visited more than once in a path. Path 
consists of segments. The smallest segment is a link i.e. a single process that lies 
between two nodes. A path segment is a succession of consecutive links that belongs 
to some path. The length of a path is measured by the number of links in it or 
alternatively, by the number of nodes traversed. The latter method has some typical 
theoretical and analytical advantages. If a program is assumed to have a single entry 
and exit node, then the number of links is just one less than the number of nodes 
traversed. Because links are named by the pair of nodes joined by them, the name of a 
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path is the name of nodes along that path. For example, the shortest path in the Figure 
4.5 from entry to exit is called “(1, 3, 5, 6, 7, 8, 10, 11, 12, 13, 2)”. Alternatively, if we 
choose to label the links, the name of the path is the succession of link names along 
the path. A path has a loop if any node is repeated. For example, path (1, 3, 4, 5, 6, 7, 
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 2) in Figure 4.5 loops about nodes 4, 5, 6 and 7. 

The word path is used in a restricted sense to denote a path that starts at a routine’s 
entrance and ends at its exit. In reality, test paths are entry to exit paths. The term 
entry/exit paths and complete paths are used to denote the paths that start at an entry 
node and goes to an exit. We will study these in detail here because: (1) it’s difficult to 
set up and execute paths that start at an arbitrary statement; (2) it’s hard to stop at an 
arbitrary statement without setting traps or using patches; and (3) entry/exit paths are 
what we want to test because we use routines that way. 

Multi-Entry/Multi-Exit Routines 

If a routine performs several variations on the same processing and it is effective to 
bypass part of the processing, the correct way to design the routine is to provide an 
entry parameter that within the routine, directs the control flow to the proper point. 
Similarly, if a routine can have several different kinds of outcomes, then an exit 
parameter should be used. An alternative could be to encapsulate the common parts 
into subroutines. Instead of using direct linkages between multiple exits and entries, 
we handle the control flow by examining the values of the exit parameter that can 
serve as an entry parameter for the next routine or a return parameter for the calling 
routine. 

The trouble with multi-entry and multi-exit routine is that it can be very difficult to 
determine what the inter-process control flow is, and consequently it is easy to miss 
important test cases. Further the use of such routines increases the number of entries 
and exits and thus, the number of interfaces, which means more test-cases than 
otherwise required. 

Fundamental Path Selection Criteria 

There exist multiple paths between the entry and exit of a typical routine. The path 
doubles at every decision and gets multiplied with the number of iterations at every 
loop. Each pass through a loop constitutes a separate path. Now, in such a case, how 
can we ensure “complete testing” of all the paths? 

1. Exercise every path from entry to exit. 

2. Exercise every statement or instruction at least once. 

3. Exercise every branch and case statement, in each direction, at least once. 

If prescription 1 is followed, automatically 2 and 3 are also followed. But prescription 
1 is impractical for most of the routines. It can be done only for those routines that 
have no loops. A static analysis of the code cannot determine whether a piece of code 
is reachable or not. A dynamic analysis can only determine whether a code is 
reachable or not and can thus distinguish between the ideal structure we think we have 
and the actual, buggy structure. 

Path Testing Criteria  

Any testing strategy based on paths must at least exercise every instruction and take 
branches in all directions. A set of test that does this is complete, not in absolute sense, 
but in the sense that anything less must have left something untested. Thus, we have 
explored three different testing criteria or strategies out of a potentially infinite family 
of strategies. These are: 



  

1. Path testing (P∞): Execute all possible control flow paths through the program; 
typically all possible entry/exit paths through the program. If we can achieve this, 
we are said to have completed 100% path coverage. This is the strongest criterion 
in the path testing strategy family and generally impossible to achieve. 
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2. Statement Testing (P1): Execute all statements in the program at least once under 
some test. If we do enough tests to achieve this, we are said to have achieved 
100% statement coverage or alternatively, 100% node coverage. We denote this 
by C1. This is the weakest criterion in the family; testing less than this is 
unconscionable and should be criminalized. 

3. Branch Testing (P2): Execute enough tests to assure that every branch alternative 
has been exercised at least once under some test. If we do enough tests to achieve 
this prescription then we have achieved 100% branch coverage or alternatively 
100% link coverage. For structure software, branch testing and thus branch 
coverage strictly includes statement coverage. We denote branch coverage by C2. 

We can define innumerable such definitions but none of them is sufficient to carry out 
exhaustive testing. 

4.2.5 Loops 

There are three kinds of loops: nested, concatenated and horrible loops, as shown in 
Figure 4.8. 
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Figure 4.8: Examples of Loop Types 

Nested Loops 

We can reduce the burden of testing nested loops using the following tactics: 

1. Start at the innermost loop and set all the outer loops to their minimum values. 

2. Test the minimum, minimum + 1, typical, maximum – 1, and maximum for the 
innermost loop, while holding the outer loops at their minimum-iteration-
parameter values. Tests can be expanded for out-of-range and excluded values. 

3. After doing the outermost loop, GOTO step 5, ELSE move out one loop and set it 
up as in step 2 – with all other loops set to typical values. 

4. Continue outward in this manner until all the loops have been covered. 

5. Do the five cases for all loops in the nest simultaneously. 

Possible bug could be an unbounded processing time. Further expansion of these cases 
is possible by accounting for the problems associated with initialization of variables 
and with excluded combinations and ranges.  

 

 



  

54 
Software Testing 

Concatenated Loops 

These loops fall between single and nested loops in terms of test cases. Two loops are 
said to be concatenated if it is possible to reach one after exiting the other while on the 
same path from entrance to exit. If they are on different paths then they are not 
concatenated but two individual loops. Loops on the same path, but independent can 
be treated as individuals; but if the iteration values in one loop are directly or 
indirectly related to the iteration values of another loop, and they can occur on same 
path, then they can be treated as nested loops. The problem of excessive processing 
time for combination of loop-iteration values should not occur because the loop-
iteration values are additive and not multiplicative as with the nested loops. 

Horrible Loops 

Although there are some techniques to test such loops, but it is always advisable to 
avoid using them due to their use of code that jumps into and out of loops, hidden 
loops, and cross-connected loops, makes iteration-value selection for test cases an 
awesome and ugly task. 

Loop Testing Time 

Testing of any loop can consume a lot of time, especially if all the possible extreme 
values are to be attempted. It gets worse for nested and dependent concatenated loops. 
In order to test nested loops in which testing the combination of extreme values leads 
to long test times, we have several options: 

1. Exhibit that the combined execution time results from an unreasonable 
specification and fix that specification. 

2. Prove that although the combined extreme cases are hypothetically possible, they 
are impossible in the real world i.e. they cannot occur. 

3. Put in limits or checks that prevent the combined extreme cases and test the 
software that implements such limits. 

4. Test with extreme combinations, but using different numbers. 

Check Your Progress 1 

 1. State whether the following statements are true or false: 

(a) Path testing is rarely used for system testing. 

(b) The control flow-graph ignores the process steps. 

(c) Possible bug of a nested loop could be an unbounded processing time. 

2. Give the two assumptions for bugs during path testing. 

 .......................................................................................................................  

 .......................................................................................................................  

 

4.2.6 Variations 

Branch and statement testing are easy to implement, effective and reasonable. But for 
the case of the complicated tests in the path testing family, we can use two main 
classes of variations: 

1. Strategies between P2 and total path testing. 

2. Strategies weaker than P1 or P2. 
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Stronger strategies require more complicated path selection criteria, majority of which 
are impractical for human test design. Typically, strategy is embedded in a tool which 
selects a covering set of paths based on strategy or helps the programmer in doing so. 

The weaker strategies based on doing less than C1 or C2 seem to contradict our 
position that C2 is the minimum requirement. This is true for completely new software 
but not for those in the maintenance situation. 

4.3 PREDICATES, PATH PREDICATES AND 
ACHIEVABLE PATHS 

4.3.1 Predicates 

The value of the decision variable decides the direction taken at the decision. For 
binary decisions, decision is taken in the form of a Boolean expression whose 
outcome is either true or false. The logical function evaluated at a decision is called a 
predicate. Every path corresponds to a succession of TRUE/FALSE values for the 
predicates traversed on that path. A predicate associated with a path is called a path 
predicate. 

Multiway Branches 

The path taken through a multiway branch such as GOTO, case statements, or jump 
statements (in assembly language) cannot be directly expressed in the terms of 
TRUE/FALSE. Although such alternatives can be described in the terms of 
multivalued logic, an easier expedient is to express multiway branches as an 
equivalent set of IF..THEN..ELSE statements. This translation may not be unique as 
there are several ways create a tree of IF..THEN..ELSE. 

Inputs 

In testing, input does not only refer to the direct inputs in the form of variables in a 
subroutine call, but includes all data objects referenced by the routine whose values 
are fixed prior to entering it, e.g. inputs in a calling sequence, objects in a data 
structure, values left in a register. Inputs can be treated as numbers irrespective if they 
are numbers, Boolean, integers, etc. Because an array can be mapped onto a one-
dimensional array, we can treat the set of inputs to the routine as if it is a one-
dimensional array, which we call input vector. 

4.3.2 Predicate Expressions 

Predicate Interpretation 

The act of symbolic substitution of operations along the path in order to express the 
predicate solely in terms of the input vector is called predicate expression. The 
interpretation may depend upon the path. For example, 

 INPUT X 

 ON X GOTO A,B,C,…. 

 A: Z := 7 @ GOTO HEM 

 B: Z := -7 @ GOTO HEM 

 C: Z := 0 @ GOTO HEM 

 ….. 

 HEM: DO SOMETHING 
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 …. 

 HEN: IF Y + Z > 0 GOTO ELL ELSE GOTO EMM 

The predicate interpretation at HEN depends upon the path we took through the first 
multiway branch. It includes three cases i.e. “IF Y + 7 > 0 GOTO…”, “IF Y – 7 > 0 
GOTO…” and “IF Y > 0 GOTO…”. Because every path can lead to a different 
interpretation of predicates along that path, a predicate that after interpretation does 
not depend on input values does not necessarily constitute a bug. 

The path predicates are the specific form of the predicates of the decisions along the 
selected path after interpretation. 

Independence and Correlation of Variables and Predicates 

The path predicates take on truth values (TRUE or FALSE) based on the values of 
input variables, either directly or indirectly. A variable is independent of processing if 
its value does not change as a result of processing. Conversely, the variable is said to 
be process dependent if its value changes as a result of processing. Similarly, a 
predicate whose truth value changes as a result of processing is said to be process 
dependent and whose value does not change as result of the processing is process 
independent. Process dependence of a predicate does not necessarily mean that it 
depends upon the input variables on which it is based. However, if all the variables on 
which a predicate is based are process independent, it follows that the predicate must 
be process independent and therefore its truth value is determined by the inputs 
directly. 

Variables, whether process dependent or independent, may be correlated to one 
another. Two variables are correlated if every combination of their values cannot be 
independently specified. Variables whose values can be specified independently 
without restriction are uncorrelated. By analogy, a pair of predicates whose outcome 
depend on one or more variables in common (whether or not those variables are 
correlated) are said to be correlated predicates. 

4.3.3 Predicate Coverage 

Compound predicates are those of the form A .OR. B or A .AND. B and more 
complicate Boolean expressions. The branch taken at such decisions is determined by 
the truth value of the entire Boolean expression. 

Predicate coverage is said to have been achieved if all the possible combinations of 
truth values corresponding to the selected path have been explored under some test. It 
is stronger than branch coverage. If all the possible combinations of all predicates are 
covered under all interpretations then it is equivalent to total path testing. 

4.3.4 Testing Blindness 

Testing blindness is a pathological situation in which the desired path is achieved for 
wrong reason. It can occur because of the interaction of two or more statements that 
make the buggy predicate work in spite of its bug and because of an unfortunate 
selection of input values that does not reveal the situation. We will be discussing three 
kinds of testing blindness: Assignment blindness, equality blindness and self-
blindness. 

Assignment Blindness 

Assignment blindness occurs when the erroneous predicate appears to work correctly 
because the chosen value works with both correct and incorrect predicate assignment 
statement.  
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For example, 

Correct      Incorrect 

X := 7       X := 7 

…..        ….. 

IF Y > 0 THEN     IF X + Y > 0 THEN 

If a test applies Y := 1, the desired path is taken in either case, but there still exists a 
bug if a different value is assigned to X. In this case, the wrong path would be taken 
because of the error in the predicate. 

Equality Blindness 

Equality blindness occurs when the path selected by a prior predicate results in a value 
that works both for correct and erroneous predicate. For example, 

 Correct      Incorrect 

 IF Y := 2 THEN …    IF Y := 2 THEN … 

 …..        …. 

 IF X + Y > 3 THEN…   IF X > 1 THEN … 

The first predicate forces the rest of the path so that for any positive value of X, the 
path taken at the second predicate will be the same for the correct and erroneous 
versions.  

Self-blindness 

Self-blindness occurs when the erroneous predicate is a multiple of the correct 
predicate and as a result is indistinguishable along that path. For example, 

Correct      Incorrect 

X := A       X := A 

…..        …. 

IF X – 1 > 0 THEN …   IF X + A – 2 > 0 THEN … 

The assignment X = A, makes the two predicates multiples of each other, i.e. A – 1 > 
0 and 2A – 2 > 0, so the direction taken is the same for the correct and incorrect 
version. A path with another assignment could behave differently and would expose 
the bug. 

4.4 PATH SENSITIZING 

Let us first review the progression of thinking to this point. 

1. We want to select and test enough paths to achieve a satisfactory notion of test 
completeness C1 and C2. 

2. Extract the program’s flow control flowgraph and select a set of tentative covering 
paths. 

3. For any path in that test, interpret the predicates along the path as needed to 
express them in terms of the input vector. In general, individual predicates are 
compound or may become compound as a result of interpretation. 

4. Trace the path through, multiplying (Boolean) the individual compound predicates 
to achieve a Boolean expression such as  

   (A + BC)(D + E)(FGH)(IJ)(K)(L) 
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 Where terms in the parentheses are the compound predicates met at each decision 
along the path and each letter (A, B, ….) stands for simple predicates. 

5. Multiply out the expressions to achieve a sum-of-products form: 

  ADFGHIJKL + AEFGHIJKL + BCDFGHIJKL + BCEFGHIJKL 

6. Each product denotes a set of inequalities that, if solved, will yield an input vector 
that will drive the routine along the designated path. 

7. Solve any one of the following sets for the chosen path and you have found a set 
of input values for the path. 

If you can find the solution, then the path is achievable. If you can’t find a solution to 
any of the sets of inequalities, the path is unachievable. The act of finding a set of 
solutions to the path predicate expression is called path sensitization. 

Heuristic Procedures for Sensitizing Path 

Rather than selecting paths which we don’t know how to sensitize, we try to choose a 
covering path set that is easy to sensitize. We can choose the hard to sensitize paths 
only to ensure complete coverage. 

1. Identify all the variables that affect the decisions and classify them as either 
process dependent or independent. Also, identify correlated input variables. For 
dependent variables, express the nature of the process dependency as an equation, 
function or whatever is convenient and clear. For correlated variables, express the 
logical, arithmetic or functional relation that defines the correlation. 

2. Classify the predicates as dependent or independent. Identify correlated input 
predicates and document the nature of the correlation as for variables. If the same 
predicate appears at more than one decision, the decisions are obviously 
correlated. 

3. Start path selection with uncorrelated, independent predicates. Cover as much as 
you can. If you achieve coverage and you had identified supposedly dependent 
predicates, something is wrong. i.e. Your tracing path could be faulty or the 
predicates are incorrectly classified or there is a bug or the predicates are corrected 
and/or dependent in such as way so as to nullify the dependency. 

4. If coverage hasn’t been achieved using independent uncorrelated predicates, 
extend the path set by using correlated predicates; preferably those whose 
resolution is independent of the processing. 

5. If coverage hasn’t been achieved, extend the cases to those that involve dependent 
predicates (typically required to cover loops), preferably those that are not 
correlated. 

6. Last, use correlated, dependent predicates. 

7. For each path selected above, list the input variables corresponding to the 
predicates required to force the path. List the value of the variable if it is 
independent. List the relation of the variable that will make it go the right way, if 
it is dependent. State the nature of the correlation of the variable if it is correlated. 

8. Each path will result in a set of inequalities which must be simultaneously 
satisfied to force the path. 
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Check Your Progress 2 

 Fill in the blanks: 

1. .................. occurs when the erroneous predicate is a multiple of the correct 
predicate and as a result is indistinguishable along that path. 

2. ............. occurs when the erroneous predicate appears to work correctly 
because the chosen value works with both correct and incorrect predicate 
assignment statement. 

3. A OR B, A AND B, etc are examples of .................... predicates. 

4. A variable is ............... if its value does not change as a result of processing. 

4.5 PATH INSTRUMENTATION 

4.5.1 Problem 

The outcome of a test is what we expect to happen as a result of testing. This includes 
the outputs as well. Just like inputs, the test outcomes include computer memory, mass 
storage, I/O, registers that should or should not have changed as a result of tests 
conducted. When a test is run, we compare the actual outcome with the expected 
outcome. If these match, we can say that some of the conditions for passing have been 
satisfied but these are not sufficient as the desired outcome could have been achieved 
for the wrong reason. This situation is called coincidental correctness. Similarly, let us 
assume that we ran a covering of tests and achieved the desired outcomes for each 
case. Again, we cannot say that we have covered because the desired outcome could 
have been achieved from the wrong path. Path instrumentation is what is required to 
be done to confirm that the outcome was achieved by the intended path. 

All instrumentation methods are the variations of an interpretive trace. An interpretive 
trace program is the one that executes every statement in order and records the 
intermediate values of all calculations, the statements labels traversed, etc. The 
problem with these traces is that they give us far more information than what is 
needed. Looking at the limitations of the trace packages or symbolic debuggers, a 
variety of instrumentation methods have emerged which are more suitable for testing.  

4.5.2 Link Markers 

A simple and effective instrumentation is called a traversal marker or link marker. 
Every link is named by a letter. Instrument the links so that its name is recorded when 
it is executed. The series of letters produced while going from the routine’s entry to its 
exit should exactly correspond to the path name if there are no bugs. Also, a single 
link marker may not be sufficient because links can be affected due to bugs. 

4.5.3 Link Counters 

The method based on counters is less disruptive. Instead of pushing unique link names 
while traversing the link, we simply increment the counter. The same problem, as with 
single link markers, exists with single link counters. This leads to double link 
counters. With these, we expect an even count which is double the expected path 
length. 

4.5.4 Implementation 

For the source languages that support test tool, path instrumentation and verification 
can be provided using this tool for unit testing. But for the languages that do not 
support these tools, it has to be done the hard way. 
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The introduction of probes may lead to bugs especially when they are inserted by 
hand. Automatically inserted probes are less prone to error but can be inserted in terms 
of real and not intended structure. This discrepancy is greater if the control is affected 
by what goes in low level routines that are called by the routines under test. 
Instrumentation is more important when the path testing is used at higher levels of 
program structure e.g. in transaction flows rather than in unit level. Also, the 
discrepancy between actual and intended structure becomes greater at the higher level 
of structure, however, the instrumentation overhead is smaller. 

Probe installation is easier when the programming language supports conditional 
assembly or conditional compilation. The probes are built into source code and tagged 
into categories. Both counters and traversal markers can be implemented as only a part 
of probes would be assembled at a time. Very rarely will all the probes be compiled 
and activated. 

Conditional assembly or compilation must be used with caution especially at the 
higher program levels. A unit may take just a few seconds to compile or assemble, 
but, the same unit if compiled in the context of a complete system, could take hours, 
thereby nullifying many of the advantages of conditional assembly or compilation. 

You can also use macros or function calls if conditional assembly or compilations are 
not available. The probe can be turned on or off by changing the macro or function 
definition or be using ON/OFF parameters inside the functions or macros. 

4.6 INSTRUMENTATION AND APPLICATION OF 
PATH TESTING 

4.6.1 Integration, Coverage and Paths in Called Components 

Path testing methods are used in unit testing especially for new software. The new 
component is tested as an independent unit with all called components and 
corresponding components replaced by stubs. This is the conventional unit testing 
method. Path-testing method at this stage is used to deal with the potential control-
flow problems without the distraction of possible bugs in called co-requisite 
components. We integrate the components carefully probing the interface issues. Once 
the interfaces are tested, we re-test the integrated component replacing the stub with 
real subroutines and co-requisite components. The component is now ready for the 
next level of integration. This bottom-up integration will continue till the entire system 
has been integrated. 

Integration proceeds in associated blocks of components while a bottom-up 
integration strategy may be used in parts. Stubs may be correctly avoided because its 
bug potential may be higher than that of a real routine. 

Path testing relies on the assumption that we can do effective testing one level at a 
time without being overly concerned with what happens at the lower levels. 

We typically loose around 15% coverage with each level. Thus, while we may achieve 
C2 at the current level, path tests will achieve 85% one level down, 70% two levels 
down, and so on. When the testing by all methods has been considered, C1 coverage 
at the system level ranges from 50% to as high as 85%. No statistics are available for 
C2 coverage in the system testing as it is impossible to monitor C2 coverage without 
disrupting the system’s operation to the point where testing is impossible. System 
level coverage is restricted to C1, which can be done by tools that minimally disturb 
the system. 
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4.6.2 New Code 

Completely new or substantially modified code should be subjected to enough path 
testing to achieve C2. Stubs are used where it is clear that the bug potential of the stub 
is lower than that of the called component. Thus, old and trusted components will not 
be replaced by stubs. Paths within called components are given consideration but only 
to that extent that the path chosen is achievable at a higher level. The unit test suite 
must be automated so that it can be repeated as integration progresses. It allows 
redoing most of the tests with very little effort as we achieve larger aggregated 
components. A previously selected path is unachievable means that we have found a 
bug from an unsuspected interaction. 

4.6.3 Maintenance 

The situation in the case of maintenance is different. Path testing would be used first 
for the modified components but called and co-requisite components will be 
invariably real rather than simulated. If we have a configuration-controlled, 
automated, unit test suite, then path testing will be repeated entirely with such 
modifications as required to accommodate the changes. Otherwise, selected paths will 
be chosen in an attempt to achieve C2 over the changed code. 

4.6.4 Re-hosting 

Path testing with the coverage C1 + C2 is a powerful tool for re-hosting old software. 
When it is used in conjunction with automatic or semiautomatic structural test 
generators, we get an effective re-hosting process. When software is no longer cost-
effective to support the environment in which it runs, it is re-hosted. The objective of 
re-hosting is to change the environment and not the software. 

We can do this in the following manner. First, a translator from the old to the new 
language is created and tested. The bugs in the re-hosted software will be in the 
translating algorithm and the translator, if any. The re-hosting process is intended to 
catch such bugs. Second, a complete (C1 + C2) path test suite is created for the old 
software in the old environment. The suite is run on the old environment on the old 
software and all the outcomes are recorded. These ten become the specification of the 
re-hosted software. Test failures or incomplete coverage leads to changes in the 
translators that could necessitate translation reruns and retesting. 

The cost of the process is comparable to cost of rewriting the software from scratch; it 
could be even more expensive, but that’s not the point. This method avoids the risks 
associated with rewriting and achieves a stable, correct software base in the new 
environment without operational or security compromises. 

4.7 LET US SUM UP 

Path testing based on structure is a powerful unit-testing tool. With suitable 
interpretation, it can be used for functional tests. The objective of path testing is to 
execute enough tests to assure that, as a minimum, C1+ C2 have been achieved. Select 
paths as deviations from the normal paths, starting with the simplest, most familiar, 
most direct paths from the entry to exit. Add paths as needed to achieve coverage. 

Add paths to cover extreme cases for loops and combinations of loops: no looping, 
once, twice, one less than maximum, the maximum. Attempt forbidden cases. Find 
path-sensitizing input data sets for each selected path. If a path is unachievable, 
choose another path that will also achieve coverage. Use instrumentation and tools to 
verify the path and to monitor coverage. 
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Incorporate the notion of coverage (Especially C2) into all reviews and inspections. 
Make the ability to achieve C2 a major review agenda item. Design test cases and path 
from the design flow-graph or PDL specification but sensitize paths from the code as 
part of desk checking. Do covering test case designs either prior or concurrently with 
coding. A test that has revealed a bug is successful and not a failure. 

4.8 LESSON END ACTIVITIES 

1. Differentiate between motivation and assumption behind software path testing. 

2. What are predicates, path predicates and achievable paths? Explain the relation 
between all of them with respect to software testing. 

3. What are the various methods used for path instrumentation? Explain each of 
them. 

4.9 KEYWORDS 

Control flow-graph: Control flow-graph (or flow-graph) is a graphical representation 
of a program’s control structure. 

Process block: A process block is a sequence of statements which do not contain any 
decision or junctions. 

Decision: A decision is a point in a program at which the control flow can diverge. 

Junction: A junction is a point in the program where the control can merge. 

Predicate: The logical function evaluated at a decision is called a predicate.  

Path sensitization: The act of finding a set of solutions to the path predicate 
expression is called path sensitization. 

Predicate expression: The act of symbolic substitution of operations along the path in 
order to express the predicate solely in terms of the input vector is called predicate 
expression. 

4.10 QUESTIONS FOR DISCUSSION 

1. Describe the various applications of path testing. 

2. Write short notes on: 

 (a) Control flow-graphs 

 (b) Loops 

 (c) Path testing 

 (d) Variations 

3. What are achievable and non-achievable paths? Elaborate on these. 

 Check Your Progress: Model Answers 

 CYP 1 

1. (a) True 

 (b) True 

 (c) True 

Contd…. 
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2. Something has gone wrong with software that makes it take a different path 
than the desired. The specifications are correct and achievable, that there 
are no processing bugs other than those that affect the control flow, and that 
data is properly defined and accessed. 

 CYP 2 

1. Self-blindness 

2. Assignment blindness 

3. compound 

 4. independent of processing 
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5.0 AIMS AND OBJECTIVES 

After studying this lesson, you would be able to understand:  

 Transaction flows: usage, implementation, complications 

 Techniques of transaction-flow testing – inspections, reviews, walkthroughs, path 
selection, sensitization, instrumentation, etc.  

 Transaction-based systems and hidden languages 
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The control flow-graph is an infinite model based on links and nodes. It was 
introduced as a structural model. We are now using a different flow-graph based on 
the same concepts, the transactional flow graph. This is based on the behavioral model 
of the program that leads to functional testing. A functional focus leads us to 
functional test methods. This also involves representing the problem as a graph model 
and defining paths to test this model completely. 

5.2 TRANSACTION FLOWS 

A transaction is a unit of work from a system’s point of view. It consists of a sequence 
of operations part of which is performed by a system, person, or devices out of 
system. Transactions begin with a birth i.e. they are created with an external act. 

5.2.1 Usage 

Transaction flows are must for specifying requirements of complicated systems. The 
transaction flows of big systems can go up to thousands e.g. airline reservation, air-
traffic control, etc. These flows are represented using flow-graphs, many of which 
have a single path. Loops are infrequent compared to flow-graphs. The most common 
loop is to request user to re-enter his inputs after an error occurs. 

5.2.2 Implementation 

The implementation of a transaction flow is usually implicit in the design of a 
system’s control structure and associated database. For example, there is no direct 
one-to-one correspondence between the “processes” and “decisions”. A transaction 
flow is a representation of a path taken by a transaction through a succession of 
processing modules. We can think of each transaction as a token like a transaction-
control block which is passed from routine to routine as it progresses through its flow. 
The transaction flow-graph is a pictorial representation of what happens to the tokens; 
it is not the control structure of the program that manipulates those tokens.  

 

 

 

 

 

Input S A Output S B S C S S 

D 

E 

Figure 5.1: Transaction Flow 

Figure 5.1 shows a transaction flow and the corresponding implementation of a 
program that creates that flow. This transaction goes through input processing, which 
classifies it as to type, and then passes through process A, followed by B. The result of 
process B may force the transaction to pass back to process A. The transaction then 
goes to process C, then to either D or E, and finally to output processing. 

5.2.3 Complications 

Although transactions have a unique identity in most of the cases right from the time 
they are created to the time they are completed, in many systems a transaction can 
give birth to others, and transactions can also merge. The simple flow-graph is 
inadequate to represent the transaction flows that split and merge. 
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4. The number of transactions and their complexities grow over time as more 
features are added and enhanced. 

Birth 

Figure 5.2 shows three different possible interpretations of the decision symbol or 
nodes with two or more outlinks. Figure 5.2(a) shows a decision node, as in control 
flow-graphs, this symbol means that the transaction will either take one alternative or 
the other, but not both. It is a decision point in a transaction flow. Figure 5.2(b) shows 
a different situation wherein the incoming transaction (the parent) gives birth to a new 
transaction (the daughter), from where the two continue on their own paths, the parent 
retaining its identity as a transaction. This situation is called biosis. Figure 5.2(c) is 
similar to Figure 5.2(b) except that the parent transaction is destroyed and the two new 
transactions are created. This situation is called mitosis. 

 

Figure 5.2: Nodes with Multiple Outlinks 

Mergers 

Transaction-flow junction points are as difficult as transaction-flow splits.  
Figure 5.3(a) shows the ordinary junction similar to the one in control flow-graph. The 
transaction can arrive at any of the two given links (link 1 or link 2). In Figure 5.3(b) 
(absorption) a predator transactions absorbs a prey. The prey is gone but the predator 
retains its identity. Figure 5.3(c) shows a different transaction in which the two parent 
transactions merge to form a new child. This method is known as conjugation. 

 

Link 1 

Link 2 
(a) 

Predator 

Prey 
(b) 

Parent 

Daughter Predator 

Parent 
(c)

Continue 

Option 1 

Option 2 
(a) 

Parent 

Daughter 
(b)

Daughter 

Daughter 
(c)

Figure 5.3: Transaction-flow Junctions and Mergers 

5.2.4 Transaction-flow Structure 

Transactional flows are normally ill structured in comparison with the control flow 
structures. The reasons behind this being: 

1. It is model of both process and code.  

2. Parts of the flow can incorporate the behavior of other systems over which there is 
no control. 

3. There are no small parts to the totality of the transaction flows exists to model 
error conditions, failures, malfunctions and subsequent recovery actions. These 
are inherently unstructured – jumping out of loops, rampant GOTOs, etc. 
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is the one which does not involve changing 
5. Systems are built on modules and the transaction flows result from the interaction 

of those modules. Good design 
modules to implement new transactions or modify the existing ones. 

Check Your Progress 1 

1. State whether the following statements are true or false: 

(a) Transactional flows are more structured in comparison with the control 

2. Define transaction flows. 

 .............. 

.............................................................................. 

5.3 TRANSACTION FLOW TESTING TECHNIQUES 

flow structures. 

(b) Transaction flow models comprise of both process and code. 

..........................................................................................................

 ..........................................

 

Complicated systems carrying out varied type of processing, complicated transactions 
umented. 

Transactional flow walkthroughs must begin at a preliminary stage of design as the 
n how to implement 

nd 98% - 99% of the 
e need to adjust the time spent and 

b. 
t. 

 indirectly. One-to-one 

2. Tra
syst arry out enough tests to ensure C1 and C2 coverage of the 
complete transaction flow-graphs. 

3. 

must have explicitly represented transaction flows or the similar, doc
Equivalent representations like HIPO charts and Petri nets can also serve the same 
purpose. Transaction flows can also be represented in the form of PDLs which can be 
mapped to programs later on. They must clearly depict the transactions so that we can 
clearly obtain transaction flows from them. Transaction flows depict a lot of details. 

Thus, we can conclude that in order to carry out transaction testing, it is necessary to 
get transactional flows. It is toughest and the most important step. 

5.3.1 Inspections, Reviews and Walkthroughs 

designers must know what the system is supposed to do rather tha
that functionality. Let us discuss the review techniques in detail: 

1. While conducting walkthroughs, we should: 

a. Discuss various transaction types which account for arou
transactions the system has to process. W
the intensity of the review proportional to the risks perceived. The designers 
must name the transactions, provide its flow-graph, identify all the processes, 
branches, loops, splits, mergers, etc. 

Discuss paths through flows in functional and not in technical terms. This 
discussion must be design independen

c. The designers must relate every flow to the specification and to show how that 
transaction follows the requirements, directly or
correspondence may not be necessary because it may lead to poor 
implementation. 

nsaction flow testing must be made the cornerstone of functional testing of the 
em. We need to c

Select extra transactional flow-graphs beyond C1 and C2 including loops, extreme 
values and domain boundaries. 
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Path selection for system testing based on transaction flow graphs is quite different 
sing the control flow graphs. We begin the covering tests 

Most of the normal paths are easy to sensitize – 80%-95% transaction flow coverage 
easy to achieve. However, the remaining ones are difficult to 

s patch than it is to negotiate a joint test session. If we don’t put a patch 

2. 
tion 

3. 
ta structures to support them. These are created using a system 

4. 
k to force the path. 

Instrumentation plays an important role in transaction flow testing than in unit testing. 
l as the same module might appear in many different flows 

30-40% of the efforts of transaction-flow testing go into the design and maintenance 
hough it is not treated as a major part but can lead to a lot of 

4. Select additional transaction-flow paths for weird can very long and risky 
problems. 

5.3.2 Path Selection 

from the unit testing u
(C1+C2) based on functionally sensible transactions as in the case of control flow-
graphs. We begin with easier paths and go on to the tougher ones which in turn will 
expose missing interlocks, duplicated interlocks, interface problems, duplicated 
processing i.e. a lot things which otherwise would have shown up during the final 
acceptance testing or even after the system was operational.   

5.3.3 Sensitization 

(C1 + C2) is usually 
achieve. Simple paths are easy to sensitize so much so that just identifying the normal 
path is enough to sensitize it. However, to sensitize the strange paths, you can use the 
following: 

1. Use patches: It is a lot easier to fake an error return from another system by a 
judiciou
into our system, the interfacing system will have to put one into their system. 

Mistune: Test in a system sized with resources which are 5%-10% of what one 
might expect to need. This helps to force most of the resource related excep
conditions. 

Break the Rules: Almost all transactions require associated and correctly 
specified da
database generator. Bypassing the system database generator and/or using the 
patches to break any and all rules embodied in the database and system 
configuration that will help you to go down the desired path. 

Use-breakpoints: Put breakpoints at the branch points where the hard-to-sensitize 
path segment begin and then patch the transaction control bloc

5.3.4 Instrumentation 

Counters may not be usefu
and the system could be simultaneously processing different transactions. The 
information of the path taken for a given transaction must be kept with that 
transaction. It can be recorded either by a central dispatcher or by the individual 
processing modules. We would need a trace of all the processing steps for the 
transaction, the queues on which it resided and the entries and exits to and from the 
dispatcher. Operating system itself provides such traces in some systems. Heavy 
instrumentation is affordable as compared to the unit testing instrumentation because 
the overhead of such instrumentation is typically small compared to the processing. 
Another alternative is to make the instrumentation part of system testing. 

5.3.5 Test Databases 

of the test databases. Alt
errors. The first error is to be unaware that there’s a test database to be designed. This 
makes the testers and the developers to design their own databases which are not 
compatible with each other. Thus, every tester and developer uses the system 
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 testing mostly requires test execution automation. Even if there 
undred test cases available to achieve C1+C2 transaction-flow 
be re-running them several times over the entire project duration. 

exclusively. The resulting tests are configuration sensitive and they cannot be ported 
from one suite to the other. Thus, to avoid such problems, often testing groups are 
given this responsibility as the independent testers need more elaborate test setups 
than programmers. 

5.3.6 Execution 

The transaction-flow
are only a few h
coverage, we may 
Transaction-flow testing with the intention of achieving C1+C2 leads to a big increase 
in the number of test cases. And these cannot be done rightly without automation. 

Check Your Progress 2 

State whether the following statements are true or false: 

1. Test databases can be created individually by both the tester and the 
programmer. 

2. During the transactional walkthroughs the designers must know what the 
system is supposed as well as how to implement that functionality. 

3. The automation of transactional testing is useful. 

N COMMENTS 5.4 IMPLEMENTATIO

5.4.1 Transaction-based Systems 

FRONT 
END

EXECUTIVE 
SCHEDULER-AND/OR OPERATING SYSTEM
DISPATCHER

B Processor
A Processor

OUTPUT 
MODULE

  DISC 
HANDLER

 

PROCESS 
QUEUES

DISPATCHER 
QUEUES

INPUT 
QUEUE

OUTPUT 
QUEUE

C Processor
D Processor

TAPES

E Processor

 

Figure 5.4: Transaction Flow Implementation 

Based on the Figure 5.4, in order to make the transaction-flow testing easier, we can
use the following things: 

various other things. It might contain this information by 

2. 

s. The dispatcher links control 

 

1. Transaction Control Block: A transaction control block is explicitly associated 
with every live transaction. The block contains the transaction type, identity, 
processing state and 
itself or might contain pointers to the information. It does not matter how exactly 
the information is contained, more importantly it is the unique data object through 
which anything we can know anything about a transaction. The control-flow block 
is created when the transaction is born and is returned to the pool when the 
transaction leaves the system for archival storage. 

Central, Common, Processing Queues: Transaction control blocks are not passed 
directly from one process to another, but are transferred from process to process 
by means of centralized explicit processing queue
blocks to processes. Processes link control blocks send the flow back to the 
dispatcher when they are done. 
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3. 

similar mechanism. 

s whose only purpose is to facilitate testing. 

Tra decisions 
may be made in a processing module. Or, the dispatcher may direct the flows, 

 stored elsewhere in the database, based 

ed by bugs far removed from 

4. ansaction processing module can have bugs. 

mec s been implemented. We look for the basic 
 for this primitive, undeclared 

Transaction Dispatcher: There is a centralized transaction dispatcher. Based on 
the transaction’s current state and transaction type, the next process is determined 
from stored dispatch tables or a 

4. Recovery and Other Logs: Key points in the transaction’s life are recorded for 
several different purposes, the most important being, transaction recovery support 
and transaction accounting. 

5. Self-test Support: The transaction control tables have privileged models that can 
be used for test and diagnostic purposes. There are special transaction types and 
states for normal transaction

5.4.2 Hidden Languages 

nsactional flow graphs may not be as simple as a control flow-graph. The 

contained in the transaction’s control block or
on control codes. Such codes form an internal language. These languages are often 
undeclared, undefined, unrecognized and undocumented. Their syntax, semantics and 
processors cannot be debugged. There can be following shortcomings in these 
languages: 

1. The language is rarely checked for self-consistency. 

2. The language may be interpreted either centrally or distributed but may still have 
bugs. 

3. The program may have bugs or may become corrupt
the transaction under consideration. 

Any tr

If transaction control tables are used to direct the flow, it is effective to treat that 
hanism as if an actual language ha

components of the language and then document syntax
language and discuss this syntax with whomever responsible for implementing 
transaction-control structure and software.  

5.5 LET US SUM UP 

The methods discussed for path testing of units and programs can be applied with 
testing based on transaction flows. 

flows, but most bugs will be found on the 

ognized, get it 

suitable interpretation to functional 

Full coverage (C1+C2) is required for all 
strange, meaningless, weird paths. Transaction-flow control may be implemented 
using an undeclared and unrecognized internal language. Get it rec
declared and then test its syntax. 

The practice of attempting to design tests based on transaction-flow representation of 
requirements and discussing those attempts with the designer can unearth more bugs 
than any tests you run. 

5.6 LESSON END ACTIVITIES 

1. Discuss the various implementation techniques for transaction based testing. 

action testing? 2. How are hidden languages helpful in trans

3. Explain the role of walkthroughs and reviews in the transaction based testing. 
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Transactional flow graph: The graph based on the behavioral model of the program 
that leads to functional testing. 

nit of work from a system’s point of view. It consists 
of a sequence of operations part of which is performed by a system, person, or devices 

IONS FOR DISCUSSION 

Transaction: Transaction is a u

out of system. 

5.8 QUEST

1. Explain path sensitizing and instrumentation in the light of transaction-flow 
testing. 

these be minimized? 

3. esting different from control-flow based testing? 

2. ion flow is a representation of a path taken by a transaction 
through a succession of processing modules. 

 CYP

5.9  SUGGESTED READINGS 

2. What is a transactional flow? What are the various complications it has? How can 

How is transactional t

 Check Your Progress: Model Answers 

 CYP 1 

1. (a) False 

(b) True 

A transact

 2 

 1. False 

 2. False 

 3. True 

Boris Beizer, Software Testing Techniques, Second Edition, Dreamtech Press, 2003. 

tion, McGraw 

Myers and Glenford, J., The Art of Software Testing, John-Wiley & Sons, 1979. 

Roger, S. Pressman, Software Engineering – A Practitioner’s Approach, 5th Edi
Hill, 2001. 

Marnie, L. Hutcheson, Software Testing Fundamentals, Wiley-India, 2007. 
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6.0 AIMS AND OBJECTIVES 

After studying this lesson, you would be able to understand:  

 The basics of data flow testing – data flow machines, data flow graphs, data flow 
model 

 The strategies of data flow testing – terminologies, strategies, slicing, dicing, 
debugging 

 Applications and its effectiveness 

6.1 INTRODUCTION  

Data flow testing utilizes the control flow graph to explore the unreasonable things 
that can happen to data (data flow anomalies). Consideration of data flow anomalies 
leads to test path selection strategies that fill the gaps between complete path testing 
and branch and statement testing. 
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Data flow testing is the name given to a family of test strategies based on selecting 
paths through the programs control flow in order to explore sequences of events 
related to the status of data objects. 

Low-cost computation and memory elements have made possible massively parallel 
machines that can break the time logjam of current architectures. Most computers 
today are Von Neumann machines. This architecture allows interchangeable storage of 
data and instructions in the same memory locations. The Von Neumann architecture 
executes one statement at a time. These machines have a single execution unit and a 
single set of registers in which to process. Thus, these machines sequence onto 
problems that may not necessarily be sequential. 

Massively parallel machines (multi-instruction, multi data - MIMD) have multiple 
mechanisms for executing a problem. They can fetch into several objects and process 
them in parallel. The decision of parallel computation is left to the compiler. The 
compiler produces parallel computation instruction for a MIMD machine and 
sequential instructions for a conventional machine. We can also say that a sequential 
machine is a special case of a parallel machine with a single processor. Irrespective of 
this, from the programmers’ point of view, it will be data-flow software that will have 
to be tested. 

One of the advantages of a data-flow graph is that there is no restriction to  
uni-processing as there is for the control flow graph. There are many independent 
parallel streams which constitute a control flow here. 

The bug assumption for data-flow testing strategies is that control flow is generally 
correct and the something has gone wrong with the software so that data objects are 
not available when they should be. Also, if there is a control-flow problem, we expect 
it to have symptoms that can be detected by data-flow analysis. 

6.2.1 Data Flow Graphs 

The data flow graph is a graph consisting of nodes and directed links i.e. links with 
arrows on them. We will be doing data flow testing but would not be using data flow 
graphs as such. We will use an ordinary annotated control flow graph. 

Data objects can be created, killed and/or used. They can be used in two different 
ways in a calculation or as part of a control flow predicate. 

d – Defined, created, initialized, etc. 

 k – killed, undefined, released. 

 u – used for something. 

 c – used in a calculation. 

 p – used in a predicate. 

1. Defined: An object is defined explicitly when it appears in a data declaration. 
Defined can also mean that a file has been opened, a dynamically allocated object 
has been allocated, something is pushed onto the stack, a record written, etc. 

2. Killed or Undefined: An object is killed or undefined when it is released or 
otherwise made unavailable, or when its contents are no longer known with 
certainty. Define and kill are complementary operations. They come in pairs 
generally and one does the opposite of the other. 

3. Usage: A variable used for computation (c) when it appears on the right-hand side 
of an assignment statement, as a pointer, as part of a pointer calculation; a file 
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record is read or written, and so on. It is used in a predicate (p) when it appears 
directly in a predicate, but also implicitly as the control variable of a loop, in an 
expression used to evaluate the control flow of a case statement, as a pointer to an 
object that will be used to direct control flow.  

Data Flow Anomalies 

We will discuss only some of the most important data flow anomalies here. An 
anomaly is the one denoted by a two-character sequence of action. The various 
possible two-letter combinations possible for d, k and u are as listed under. Some of 
these are suspicious, some are bugs and some are okay. 

dd Probably harmless but suspicious. Why do we need to define an object twice 
without using it in between? 

dk Probably a bug. Why to define an object without using it? 

du Normal case. The object is used after defining it. 

kd Normal case. An object is killed and then redefined. 

kk Harmless but probably buggy. Did you want to be sure it was really killed? 

ku A Bug. The object does not exist in the sense that its value is undefined or 
indeterminate. 

ud Usually not a bug because the language permits reassignment at almost any 
time. 

uk Normal situation. 

uu Normal situation. 

In addition to these, there are six single letter situations. A leading dash means nothing 
of the interest occurs prior to the action noted along the entry-exit path of interest and 
a trailing dash to mean that nothing happens after the point of interest to the exit. 

-k : possibly anomalous because from the entrance to this point on the path, the 
variable had not been defined. We’re killing a variable that does not exist; but 
note that the variable might have been created by a called routine or might be 
global. 

-d : okay. This is just the first definition along this path. 

-u : Possibly anomalous. Not anomalous if the variable is global and has been 
previously defined. 

k- : Not anomalous. The last thing done on this path was to kill the variable. 

d- : Possibly anomalous. The variable was defined and not used on this path; but 
this could be a global definition or within a routine that defines the variables for 
other routines. 

u- : Not anomalous. The variable was used on this path but not killed. This signals a 
frequently occurring bug. This means an instance where a dynamically 
allocated object was not returned to the pool after use. 

Data Flow Anomaly State Graph 

As per the data flow model an object can be in one of the four distinct states. These 
are: 

 K – undefined, previously killed, does not exist. 

 D – defined but not yet used for anything. 
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 U – Has been used for computation or in predicate. 

 A – Anomalous. 

If a variable has not been defined, it is said to be in the state K. If we use this variable 
or try to kill it, the state of the variable becomes anomalous (A). Once a variable is 
anomalous, it cannot be brought back to a normal state by taking any action 
whatsoever. If it is defined (d), it goes into D, or defined but not yet used state. If it 
has been defined (D) and redefined (d) or killed without use (k), it becomes 
anomalous, while usage (u) brings it to the U state. If in U, redefinition (d) brings it to 
D, u keeps it in U and k kills it. 

Static versus Dynamic Anomaly Detection 

Static analysis is the one done on source code without executing it e.g. syntax error in 
code. Dynamic analysis is the one done on the fly as the program is executed and is 
based on the intermediate values that result from the program’s execution e.g. division 
by zero. If a data flow anomaly can be detected using static analysis method, then it 
does not belong to testing but to the language processor. 

Static analysis is not sufficient and still requires further testing as it is inadequate in 
the following situations: 

1. Dead Variable: Although we can prove that a variable is dead or alive at a 
particular point in a program, the general problem is unsolvable. 

2. Arrays: Array is defined or killed as a single object but is referenced using 
individual locations, which causes problems. Pointers to arrays are generated 
dynamically, so we cannot do static analysis to validate this pointer. 

3. Records and Pointers: In a lot of problems we create files and their names 
dynamically and there’s no way to determine their whether such objects are in the 
proper state on a given path or whether they exist at all, without execution. 

4. Dynamic Subroutine or Function Names in a Call: A subroutine or a function 
name is a dynamic variable in a call. We cannot determine if a call to a subroutine 
is correct without executing it. 

5. False Anomalies: Anomalies could be path specific. A clear bug may not be a 
bug if the path along which it exists is unachievable. Such anomalies are called 
false anomalies. The problem to determine if a path is achievable or not cannot be 
solved. 

6. Recoverable Anomalies and Alternate State Graphs: Anomaly recovery is 
possible but only if the language processor has a built-in anomaly definition with 
which you may or may not agree. 

7. Concurrency, Interrupts, System Issues: Whenever we think in terms of systems 
and not in terms of single-task uni-processor environment, the anomalies become 
more complicated. Thus, much of the system testing is aimed at detecting data-
flow anomalies that cannot be detected in the context of a single routine. 

Although static analysis has limits, they are worth using and prove better for anomaly 
detection. 

6.2.2 Data Flow Model 

The data flow model that we are discussing depends on the program’s control flow 
graph. We associate with each link a symbol or a sequence of symbols which denote 
the sequence of data operations on that link with respect to the variable of interest. 
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Such annotations are called link weights. The control flow-graph is the same for all 
variables, only the weights attached to each of the links change. 

Components of the Model 

Let us discuss some of the data flow graph modeling rules: 

1. For every statement there is a node, which is named. Each node has at least one 
outlink and at least one inlink except for the exit nodes which do not have outlinks 
and entry nodes, which do not have inlinks. 

2. Exit nodes are dummy nodes placed at the outgoing arrow heads of the exit 
statements to complete the graph. Similarly, entry nodes are dummy nodes placed 
at entry statements. 

3. The outlinks of simple statements are weighted by proper sequence of data-flow 
actions for that statement. 

4. Predicate nodes are weighted with the p-use(s) on every outlink, appropriate to 
that outlink. 

5. Every sequence of simple statements can be replaced by a pair of nodes that has, 
as weights on the link between them, the concatenation of link weights. 

6. If there are several data-flow actions on a given link for a given variable, then the 
weight of the link is denoted by the sequence of actions on that link for that 
variable. 

7. Conversely, a link with several data-flow actions on it can be replaced by a 
succession of equivalent links, each of which has at the most one data-flow action 
for any variable. 

Check Your Progress 1 

1. State whether the following statements are true or false: 

(a) The sequence ku denotes a bug. 

(b) Data flow graphs cannot represent parallel processing streams. 

2. Fill in the blanks: 

(a) Data flow graph is a graph consisting of ............... and ................ links. 

(b) Data objects can be used either in ................ or as part of a ................ 

6.3 DATA FLOW TESTING STRATEGIES 

Data flow testing strategies are structural in nature. Required element testing is the 
way of generating a family of test strategies based on a structural characterization of 
the way test cases are to be defined and a functional characterization that test case 
must satisfy. Pure structural and functional testing as well as hybrid strategies can be 
employed. 

Every algorithm used for selecting links and/or nodes defines a corresponding test 
strategy. The only structural characteristics used in the path-testing are the raw 
program-control graphs. Nodes and links are considered to have no property other 
than the fact that they exist. 

In contrast to the path-testing strategies, data-flow strategies take into account what 
happens to data objects on the links in addition to the raw connectivity of the graph. 
This strategy requires data-flow link weights and is based on selecting test path 
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segments (called subpaths) that satisfy some characteristic of data flows for all data 
objects. Based on the rule of selecting test path segments, a major objective of testing 
research is to determine the relative strength of the strategy corresponding to that rule 
i.e., to find out whether it is stronger or weaker than some strategy or incomparable. A 
strategy X is stronger than strategy Y if all test cases produced under Y are included in 
those produced under X – conversely weaker. 

6.3.1 Terminologies 

Assuming that all paths are achievable let us define some terminologies: 

1. A definition-clear path segment with respect to variable X is a connected sequence 
of links such that X is defined on the first link and not defined or killed on any 
subsequent link of that path segment. A definition-clear path between two nodes 
does not imply that all subpaths between those nodes are definition-clear. There 
are many subpaths between nodes some which could have definition on them and 
some not. A definition clear path segment does not prevent loops. 

2. A loop-free path segment is a path segment for which every node is visited at 
most once. 

3. A simple path is a path segment in which at most one node is visited twice.  
A simple path segment is either loop-free or if there is a loop, only one node is 
involved. 

4. A du path from node i to k is a path segment such that if the last link has a 
computational use of X, then the path is simple and definition-clear; if the 
penultimate node is j, i.e. the path is (i,p,q,r,s,…..,j,k) and link (j,k) has a predicate 
use –then the path from I to j is both loop-free and definition-clear. 

6.3.2 Strategies 

The strategies that we will be discussing here are based on the program’s control flow-
graphs. The extent of usage of the predicate and computational uses in the test set 
differentiates them. They may also differ depending upon if all the paths of a given 
type are required or only one path of that type, etc. 

1. All-du paths (ADUP): It is the strongest of all data-flow testing strategies.  
It requires that every du path from every definition of every variable to every use 
of that definition be exercised under some test. This strategy requires the greatest 
number of paths for testing. 

2. All-Uses Strategy: At least one path from every definition of every variable to 
every use of that can be reached by that definition. For every use of the variable, 
there is a path from the definition of that variable to the use. 

3. All-p-Uses/Some-c-Uses and All-c-Uses/Some-p-Uses Strategies: 

 APU+C Strategy: For every variable and every definition of that variable, 
include at least one path from the definition to every predicate use; if there are 
definitions of that variable that are not covered then add computational use 
test cases as required to cover every definition. In this testing strategy, there is 
a path from every definition to every p-use of that definition. If there is a 
definition with no p-use following it, then a c-use of the definition is covered. 

 ACU+P Strategy: For every variable and every definition of that variable, 
include at least one path from the definition to every computational use; if 
there are definitions of the variable that are not covered then add predicate use 
test cases as required to cover ever definition. In this testing strategy, for 

 



 

81
Data Flow Testing

every variable, there is a path from every definition to every c-use of that 
definition. If there is a definition with no c-use following it, then a p-use of 
the definition is considered. 

4. All Definitions Strategy: Every definition of every variable be covered by at least 
one use of that variable, be that use a computational use or a predicate use. In this 
strategy, there is path from every definition to at least one use of that definition. 

5. All-Predicate-Uses, All-Computational Uses Strategies: All p-uses strategy 
(APU) is derived from APU+C by dropping the requirement of including a c-use 
if there are no p-use instances following the definition. In this testing strategy, for 
every variable, there is path from every definition to every p-use of that definition. 
If there is a definition with no p-use following it, then it is dropped from the 
contention. 

ACU strategy is derived from ACU+P by dropping the requirement of including a  
p-use if there are no c-use instances following the definition. In this testing strategy, 
for every variable, there is a path from every definition to every c-use of that 
definition. If there is a definition with no c-use following it, then it is dropped from 
contention. 

Let us discuss all these strategies with the help of an example. In this example, we 
calculate the monthly bill of a mobile phone user. The following code snapshot talks 
about the actual billing logic: 

bill = 0.0; 

if (usage > 0) 

 bill = 40; 

if (usage > 100) 

{ 

 if (usage < = 200) 

 { 

  bill = bill + (usage – 100) * 0.5; 

 } 

 else 

 { 

  bill = bill + 50 + (usage – 200) * 0.1; 

  if (bill >= 100) 

  { 

   bill = bill * 0.9; 

  } 

 } 

} 

return bill; 
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The annotated control flow graph for variable ‘bill’ is as shown in Figure 6.2 below. 

            

Figure 6.2: Annotated Control Flow Diagram for Variable ‘Bill’ 
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Figure 6.3: Annotated Control Flow Graph for Variable ‘Usage’ 

Ordering of Strategies 

For selection of test cases, we need to analyze the relative strength of the strategies of 
data-flow testing. Figure 6.4 depicts the relative strength of the data-flow strategies 
and other control-flow testing strategies such a branch and all-statement. According to 
this figure, the strength of testing strategies reduces along the direction of the arrows. 
Thus, ALL PATHS is the strongest testing strategy. Also, ACU+P and APU+C run 
parallel and hence are comparable. 
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ALL DU PATHS 

ALL USES 
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 Figure 6.4: Relative Strength of Testing Strategies 

6.3.3 Slicing, Dicing, Data Flow and Debugging 

A program slices is a part of the program defined with respect to a given variable  
X and a statement i: it is the set of all statements that could affect the value of X at 
statement i – where the influence of a faulty statement could result from an improper 
computational use or predicate use of some other variables at prior statements. If X is 
incorrect at statement i, it follows that the bug must be in the program slice for X with 
respect to i. A program dice is a part of slice in which all statements which are known 
to be correct have been removed. Alternatively, a dice is obtained from a slice by 
incorporating information obtained through testing or experimenting. These 
procedures of slicing and debugging are at the heart of a debugger. The debugger 
limits his scope to the statements that have caused the faulty value at statement i and 
then eliminates the statements that have proven to be incorrect while testing. 
Debugging is an iterative process and ends when the dice has been reduced to the one 
faulty statement. 

Dynamic slicing is a refinement of static slicing in which only statements on 
achievable paths to the statement in question are included. 

Check Your Progress 2 

1. Fill in the blanks: 

(a) ........................... is the strongest data flow testing strategy. 

(b) There is path from every definition to at least one use of that definition 
in the ........................... strategy. 

2. State whether the following statements are true or false: 

(a) A simple path is a path segment in which at most one node is visited 
twice. 

(b) Data integrity is an important code as integrity. 
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Sneed’s comparison of branch coverage to data-flow testing is that the number of bugs 
detected by requiring 90% data coverage is twice as high as those detected by 
requiring 90% branch coverage. 

The study conducted by Weyuker on the comparison of data flow testing strategies is 
the most thorough to date. The study examined the number of tests needed to satisfy 
ACU, APU, AU and ADUP. The number of test cases is normalized to the number of 
binary decisions in the program.  

Data flow testing concepts have been around for a long time. It is as cost effective as 
the branch coverage and statement. Finding of data-flow-covering test sets has more 
or less the same difficulty level as finding branch-covering test sets. 

Data flow testing entails additional record keeping, for which a computer is most 
effective. Simpler tools, that can keep track of which variables were defined and 
where and in which subsequent statement the definition is used, can significantly 
reduce the efforts of data-flow testing. Test designs are similar to that of P1 and P2 as 
the one entry/exit test case passes through a bunch of definitions and uses different 
variables. 

6.5 LET US SUM UP 

Data integrity is as important as code integrity. All data definitions and subsequent 
uses must be tested. What forms a data flow anomaly is peculiar to the application. 
Use the available tools to detect those anomalies that can be detected statistically. 
Static data flow anomaly detection can be an important criterion in selecting a 
language processor. 

The data flow testing strategies reduce the gap between all paths and branch testing. 
Out of all the strategies available, AU has the best value for money, although it 
requires double the test cases as for branch testing. AU can be achieved using tools 
available. The symbols d, k, u and associated anomalies can be interpreted in terms of 
file opening and closing, resource management and other applications. 

6.6 LESSON END ACTIVITIES 

1. Differentiate between static and dynamic anomaly detection. 

2. Mention the various states of a data object and their usage. 

3. List down the various data flow anomalies. What are the different alphabets used 
to represent the same? 

6.7 KEYWORDS 

Branch Coverage: Branch coverage is achieved when every path from a control flow 
graph node has been executed at least once by a test suite.  

Data-flow Anomaly: A data-flow anomaly is denoted by a two-character sequence of 
actions. 

Data-flow Testing: It selects paths through the program’s control flow in order to 
explore sequences of events related to the status of data objects. 

State: The state of an object can be defined as a set of instance variable value 
combinations that share some property of interest. 
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Statement Coverage: Coverage achieved when all the statements in a method have 
been executed at least once. 

6.8 QUESTIONS FOR DISCUSSION 

1. List the different strategies of data-flow testing. 

2. Compare the effectiveness of the various strategies for data-flow testing. 

3. Describe a model used for data flow testing. 

 Check Your Progress: Model Answers 

 CYP 1 

 1. (a) True 

  (b) False 

 2. (a) calculation, control flow predicate 

  (b) nodes, directed 

 CYP 2 

 1. (a) All paths 

  (b) all Definitions 

 2. (a) True 

  (b) True 
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Syntax Testing7.0 AIMS AND OBJECTIVES 

After studying this lesson, you would be able to understand:  

 The why, what and how of syntax testing – garbage, operators, malicious and 
casual users, applications and hidden languages, etc. 

 A grammar for formats – Its objectives and the BNF notation 

 Implementation and Application – Execution automation, design automation, 
productivity, training and effectiveness and Ad-Lib tests 

 Testability tips – The tip, compiler overview, typical software, separation of 
phases, prerequisites 

7.1 INTRODUCTION  

System inputs must be validated. Internal and external inputs must comply with the 
format Backus-Naur Form – a specification form that can be mechanically converted 
into more input-data validation tests that anyone could want to execute. 

7.2 WHY, WHAT AND HOW? 

7.2.1 Garbage 

Garbage-in equals Garbage-out is a situation when the program screws up hurting the 
sentiments of the people involved. It leads to an investigation to know the cause of 
this occurrence. The reason for this is the failure to install good data-validation 
checks, or worse, or failure to test the system’s tolerance for bad data. Garbage should 
not get into the system, in the first place. 

7.2.2 Casual and Malicious Users 

Systems that have to be used by public must be robust and must validate the input. 
The more the users using the system, the likelier it is that they would hit the point 
which is vulnerable to bad inputs. 

Malicious users are those who delight in doing strange things to our systems. They 
could as well be programmers. They are persistent and systematic. One attack by them 
is severe than years of usage by ordinary users and bugs found by chance. 

7.2.3 Operators 

There are operators of the system which use the system in a way in which it was not 
intended to resulting in eventualities. They commit mistakes which can be serious. 
They work using intuition, common sense, and brilliance to find a chance to prove the 
system malfunctioning. 

7.2.4 The Internal World 

Not only can the big system be attacked by external environment but also a hostile 
internal environment. A huge system can be divided into numerous loosely coupled 
subsystems with various internal interfaces. These interfaces present the opportunity 
for data corruption and might require explicit data validations. Failing hardware can 
put bad data into memory, across channels, etc. 

7.2.5 What to Do? 

We can at first validate the input to defend the system against the hostile world.  
A good designed system will not accept the garbage at all. As part of system testing, 
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we perform input-tolerance testing as if it is being done in the final phase, so it is done 
by independent testers. 

7.2.6 Applications and Hidden Languages 

Syntax testing can be applied in most of the systems as they have hidden languages. A 
hidden language is a programming language that has not been recognized as such. 
Syntax testing is used to validate and break the explicit or implicit parser of this 
language. The problem with these hidden languages is that they don’t have a formal 
definition of syntax, syntax has bugs and parsing is often intertwined with processing. 
These languages can be exploited by recognizing them using the following techniques: 

1. User and operator commands are examples of languages. 

2. The counterparts, to the operator and user command language for batch processing 
are job control languages at the operating system level or at the application-
specific level. 

3. An offline database generator is used to create the database. 

4. A system wide inter-process communication convention has been established. 

5. The format used for inter-process communication does not consist of simple and 
fixed fields. 

Syntax testing is a method which depends on creating a lot of test cases. It is an 
effective method because the number of test cases designed is large which makes it 
easier and more likely to reveal bugs. 

7.2.7 The Graph we Cover 
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Figure 7.1: Pascal Fields Definition Graph (Courtesy Microsoft) 

We can perform the syntax testing using the graph shown in Figure 7.1. We can define 
a set of covering paths through this graph. For each path, generate the fields 
corresponding to that path. We also cover all the loops in the graph during syntax 
testing. 
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7.2.8 Overview 

Syntax testing consists of the following steps: 

1. Identification of the target language or format. 

2. Define the syntax of the language, formally, in a convenient notation such as 
Backus-Naur Form (BNF). 

3. Test and debug the syntax to assure that it is complete and consistent and that it 
satisfies the intended semantics. 

4. While covering the syntax graph we must be sure that we have tested all the 
options. 

5. Syntax testing must be automated to the best possible extent. 

Check Your Progress 1 

1. Define Backus Naur Form (BNF). 

 ......................................................................................................................... 

 ......................................................................................................................... 

2. State whether the following statements are true or false: 

(a) Syntax testing can be applied in systems having hidden languages.  

(b) At times it is required to inject garbage into the system to test its 
credibility.  

7.3 A GRAMMAR FOR FORMATS 

7.3.1 Objectives 

Every input has syntax. Data validation checks the input for correct syntax. The syntax 
is best defined in a formal language which can be used by the tester to create useful 
garbage. This specification can be conveniently expressed in Backus Aur Form which 
is very similar to the regular expressions.  

7.3.2 BNF Notation (BACK59) 

Elements 

Every input can be considered as a string of characters. The software accepts valid 
strings and rejects the invalid ones. If the software fails on a string then we have found 
the bug, but if it accepts then it’s guilty of GIGO. Let us consider a sample definition. 

Alpha_characters:  

A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z 

Numerals ::= 1/2/3/4/5/6/7/8/9 

Zero ::= 0 

Signs ::= !/@/#/$/%/^/&/*/(/)/-/+/=/’/”/./?/;/: 

sSpace ::= sp 

At the left hand side is the name of the object to which is assigned the values of the 
expressions on its right. The symbol ‘::=’ is considered as a single symbol which 
serves as “is defined as”. The slash ‘/’ means “or”. We are using the BNF to define a 
miniature language called the metalanguage. We use sp to refer to the blank spaces. 
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An italicized symbol is used for a character that cannot be printed conveniently,  
e.g. null (nl), end-of-text (eot), clear-screen, carriage return (cr), line feed (lf), etc. 

BNF Operators 

The operators that are used are: +, concatenate, *, +, An (exponential), etc. Each 
definition in turn may refer to another definition or to itself in such a way that 
eventually it gets down to the characters that form the input string. For example: 

 Word ::= alpha_character alpha_character / numeral sp numeral 

As per this definition, we have the following examples of words and nonWords. 

 Words: AB, GH, IK, 4 sp 9, 1 sp 5, 8 sp 3 

 nonWords: GGG, A sp J3, 111, STEP, +, NOT sp DART 

The designer wants to detect and accept the words and reject nonWords; the tester 
wants to generate nonWords and force the program to deal with them. 

Repetitions 

Object1-3 means one to three objects, object* means zero or more occurrences of the 
object without limit and object+ means one or more repetition of the object. Because 
both + and * refer to unlimited repetitions, they cannot appear in any of the valid 
syntax. They cannot be done in a finite memory or in the real world. The software 
must have means to limit the number of repetitions. This can be done by associating 
an explicit test with every + or * operator, in which case you should replace the 
operator with a number. Another way to limit the repetition is by placing a global limit 
on the length of any string. Yet another way is to limit a common resource such as 
stack or array size. 

The sign of weak software is the ease with which you can destroy it by overloading its 
repetition-limiting mechanisms. If the mechanism doesn’t exist, you can probably 
scribble all over the stack or code. 

Example of a Telephone Number 

 Special_digit ::= 1/2/5 

 Zero   ::= 0 

 Other_digit  ::= 3/4/6/7/8/9 

 Ordinary_digit ::= special_digit / zero / other_digit 

 Exchange_part ::= other_digit2 ordinary_digit 

 Number_part ::= ordinary_digit4

 Phone_number ::= exchange_part number_part 

According to this definition, following are the examples of phone_numbers: 

 3469900, 3300000, 9904567 

And these are not phone_numbers: 

 1212555, 55510000, GHJLKF000067%, 0009-456A 

In order to reduce the number of steps in the definition, it is useful to enclose an 
expression in parentheses.  

Example of an Operator Command 

Operator command = mnemonic field unit 1-8 +  

An operator command consists of a mnemonic followed by one or eight field_units 
and a plus sign. 
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  Field-unit  ::= filed delimiter 

  Mnemonic  ::= first_part second_part 

  Delimiter  ::= sp / , / . / $ / *sp1–42

  Field   ::= numeral/alpha/mixed/control 

  First_part  ::= a_vowel a_consonant 

  Second_part ::= b_consonant 

  A_vowel  ::= A/E/I/O/U 

  A_consonant ::= B/D/F/G/H/J/K/L/M/N/P/Q/R /S/T/V/W/X/Y/Z 

  B_consonant ::= B/G/X/Y/Z/W/M/R/C 

  Alpha   ::=a_vowel/a_consonant/ b_consonant 

  Numeral  ::= 1/2/3/4/5/6/7/8/9/0 

  Control   ::= $/*/%/sp/@ 

  Mixed   := control alpha control/control numeral control/control   
               control control 

Following are some valid operator commands: 

 ABWX A. B. C. 7. + 

 UAMT W sp sp sp sp + 

Following are not operator_commands 

 ABC sp + 

 A sp BCDEFGHIJKLMNOPQR sp47+

The telephone number example started with recognizable symbols and constructed 
some more complicated components from them using the bottom-up approach. The 
command example started at the top and worked down to the real characters, 
following a top-down approach. 

7.4 IMPLEMENTATION AND APPLICATIONS 

7.4.1 Execution Automation 

Syntax testing must necessarily have automated test execution because it is not easy to 
design so many tests manually and it is made easier if done in an automated manner. 
Syntax testing is effective only if it has a lot of test cases defined. 

An automation platform is a prerequisite to execute automation. This can be made out 
of a PC with hard-disk and general purpose emulator software such as CROSSTALK 
MK-4. 

Manual Execution 

A manual execution of test cases is a strict no-no. It is even worse than putting test 
cases on paper tape and then running the tape in turn. 

Capture/Relay 

A capture/relay is a system which captures your keystrokes and stuff sent to the screen 
and stores them for later execution. You execute your designed syntax test cases the 
first time through these capture/replay systems. These systems have a built-in editor 
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and pass the test data to a word processor for editing. In this way, even if your first 
execution is faulty, you will be able to correct it. 

Drivers 

A driver is a program that automatically sequences through a set of test cases usually 
stored as data. It can either be built on your own or bought from the market. 

Scripting Language 

A scripting language is a language used to write test scripts. CASL is a nice scripting 
language because it can be used to emulate any interface, work from strings stored as 
data, and provide smart comparisons for test outcome validation, editing and 
capture/replay. 

7.4.2 Design Automation 

Syntax testing is a nice method to begin with test automation effort because it’s so 
easy and has high paying results in the first go. 

Primitive Methods 

Primitive methods involve the use of a copy machine and a typist and later on a word 
processor. If you understand these primitive methods, then you’ll understand how to 
automate much of syntax test design. 

Scripting Language 

A scripting language and processor such as CASL has the necessary features required 
to automate the replacement of good substrings by bad ones on the fly. It is a good 
technique if the main purpose is to stress the software rather than to validate the 
format validation software. If we want to do it right, irrespective of language, you 
need to be more sophisticated. 

Random String Generator 

We cannot use only random string generators because random strings get recognized 
as invalid very easily and even a weak front end will catch most bad strings. The 
probability to hit the vulnerable point is too low. A random string generator is too easy 
to build. We need to be careful about the place to put the string terminators like 
carriage returns. 

7.4.3 Productivity, Training and Effectiveness 

It is pretty easy for even new persons to develop syntax test design and test cases. The 
people with no experience of test designing before can produce a huge number of 
syntax test cases. It is also easy to convince a novice tester that testing is infinite with 
the help of syntax testing. 

7.4.4 Ad-Lib Tests 

Ad-lib tests are those which test the software for invalid input syntax. These types of 
tests enhance the confidence in the system as well as the tests. Let us now see what 
exactly happens in these tests: 

1. Most of the ad-lib tests would be input strings violating the format so that the 
system rejects them. 

2. The rest are the good strings that appear to be bad. The system accepts the strings 
and does as it was told to but is not recognized by the ad-lib tester. 
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3. A few correct appearing strings will be correctly rejected because of a correlation 
problem between two field values or a state dependency. 

4. Once an ad-lib test proves that the system is wrong, it would be required to dig all 
the documentation available to ensure if the system behaves as per customer’s 
expectations. 

This type of testing is not useful if the system is good, has been tested thoroughly 
during unit testing and there has been good quality control.  

Check Your Progress 2 

Fill in the blanks: 

1. ........................ Tests test the software for invalid input syntax. 

2. In BNF, ‘/’ is used for the ........................ operation. 

7.5 TESTABILITY TIPS 

7.5.1 The Tip 

Here are a few tips for testing: 

1. Bring the hidden language out of the closet. 

2. Define the syntax in BNF. 

3. Simplify the syntax definition graph. 

4. Build a parser. 

7.5.2 Compiler Overview 

Compiler works in three steps: lexical analysis, parsing and code production. 
Although we don’t use a compiler as often as an interpreter but because we are testing 
hidden languages, we would be interested in a compiler. Let us now discuss these 
steps in detail now: 

1. Lexical analysis: This phase does the following: 

a. The analyzer identifies individual fields. 

b. The analyzer identifies the inter-field separators or delimiters. 

c. Classify the field as integer, string, operator, keyword, etc. Some fields are 
translated at this point like numbers or strings. 

d. New variable names and program labels are stored in a symbol table and 
replaced by a pointer to that table.  This pointer is an example of a token. 

e. Keywords are also replaced by tokens. Numbers and strings are also put in a 
table and replaced by pointers. 

f. Delimiters are eliminated wherever possible. If the language allows multiple 
statements per line and there are statement delimiters, statements will be 
separated so that subsequent processing will be done one statement at a time. 
Similarly, multiple line statements are combined into a single string. 

g. The output of this phase is the partially translated version of the source in 
which all linguistic components are replaced by tokens. This act of replacing 
components by tokens is called tokenizing. 



  

96 
Software Testing 

2. Parsing: Parsing is done on the tokenized strings. The strategy to be used for 
parsing depends upon the kind of statement, language and the compiler’s 
objective. The validation in the parsing step shows that the string to be parsed 
corresponds to a path in the syntax graph. The output of the parser is a tree with 
the statement identifier at the top, primitive elements at the bottom and with 
intermediate nodes corresponding to definitions that were traversed along the path 
through the syntax graph. 

3. Code production: It consists of scanning the above tree in such a way to assure 
that all objects are available when they are needed and then replacing the tokens 
with sequences of instructions that accomplish what the tokens signify. 

7.5.3 Typical Software 

Typical software follows the following steps for syntax validation and command 
processing: 

 lex_a_little + parse_a_little + process_a_little 

Because all these aspects are intertwined with one another, a single bug can involve all 
these three aspects. 

7.5.4 Separation of Phases 

Lexical parsing separation means that test strings with combined lexical and syntax 
errors will not be productive. Parsing-processing separation means that we can 
separate domain testing from syntax testing. Domain analysis is the first stage of 
processing and follows parsing, and it is therefore independent of syntax. The bottom 
line of separation process is the elimination of double-errors and high-order 
vulnerabilities and therefore the need to even consider such cases. 

Separation means separate maintenance. That is, if a processing routine is wrong, 
there’s no need to change the lexical analyzer or parser for that. If a new command is 
to be added, chances are that only the parser and keyword table will be affected. 

All this can come at the cost of more memory and more processing time or may be 
neither of the two. 

7.5.5 Prerequisites 

The language should be decent enough so that is possible to do lexical analysis before 
parsing and parsing before processing. This means that it is possible to pull out the 
token in a left-to-right manner over the string and to do it independently of any other 
string or statement in the language. This is an example of a context-dependent 
language. Languages with more virtuous properties are called context-free. 

7.6 LET US SUM UP 

Syntax testing commences with a validated format specification. Express the syntax in 
a formal language like BNF. Simplify the syntax definition graph before designing. 
Design syntax tests level by level from top to bottom making only one error at a time, 
one level at a time, leaving everything else as correct as possible. 

Test the valid cases covering the definition graph. Concentrate on delimiters and their 
errors that could cause syntactic ambiguities. Stress all BNF exponent values as for 
loop testing. Test field-value errors and state dependencies by domain testing and state 
testing, as appropriate. 

Take the design advantage to simplify tests and vice versa. Document copiously and 
automate as much as possible – use capture/replay systems and editors to create tests 
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and build or buy drivers to run them. Give attention to the ad-lib testers and remember 
that they can be replaced by a random string generator. Cover all the valid cases. 

7.7 LESSON END ACTIVITIES 

1. Explain the Backus Naur Form. Give the complete description of its characters, 
operators, etc. 

2. What is a compiler? How does it work? 

3. List down the different techniques of design automation. 

7.8 KEYWORDS 

Tokens: A token is strictly a string of characters that the compiler replaces with 
another string of characters. 

Tokenizing: The act of replacing components by tokens is called tokenizing 

Hidden Language: A hidden language is a programming language that has not been 
recognized as such. 

GIGO: Garbage in Garbage Out 

7.9 QUESTIONS FOR DISCUSSION 

1. Define capture/reply, drivers and scripting languages. 

2. What are the steps to identify a hidden language? 

3. List down the various steps included in syntax testing. 

 Check Your Progress: Model Answers 

 CYP 1 

1. Backus Naur Form is a notation to represent the syntax of a language. It can 
be used by testers to create useful garbage. 

2. (a) True 

(b) True 

 CYP 2 

 1. Ad-lib 

 2. OR 

7.10 SUGGESTED READINGS 
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Hill, 2001. 
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After studying this lesson, you would be able to understand:  

 Motivational overview – Programmers and Logic, Hardware Logic Testing, 
Specification Systems and Languages, Knowledge based systems, overview 

 Decision tables – definitions and notations, decision table processors, decision 
tables as basis for test case design, test case design, decision tables and structure 

 Path Expression – Boolean algebra and equations 

 KV charts – simple forms, three variable, four and more variables 

 Specifications – finding and translating logic, ambiguities and contradictions, 
don’t care and impossible terms 

8.1 INTRODUCTION 

The functional requirements of many programs can be specified using decision tables 
which provide a useful basis for program and test design. Consistency and 
completeness can be analyzed using Boolean algebra which can also be used for test 
design. Boolean algebra is trivialized by using Karnaugh - Veitch charts. 

8.2 MOTIVATIONAL OVERVIEW 

“Logic” is a commonly used word with programmers. We will learn about logic in its 
simplest form, i.e. Boolean algebra, and its applications to program and specification 
test and design. Boolean algebra is to logic as arithmetic is to mathematics. In its 
absence the tester or programmer is cut off from many test and design and tools that 
include those techniques. 

8.2.1 Hardware Logic Testing 

Hardware logic design and hardware logic test design are now intensely automated. 
Many test methods developed for hardware logic testing can be applied for software 
logic testing.  

8.2.2 Specification Systems and Languages 

With the improvements in programming and testing techniques, the bugs have moved 
closer to the process front end requirements and specifications. These bugs form 
approximately 8% to 30% of the total and are the costliest as they are the first ones to 
enter and last ones to leave. 

The specifications are hard to express. Boolean algebra or sentential calculus is the 
most basic of all logic systems. Higher order logic systems are needed and used for 
formal specifications. But even these advanced methods are based on the Boolean 
algebra which reasons the importance to understand it. 

8.2.3 Knowledge based Systems 

The knowledge based system or expert system or artificial intelligence system are 
preferred today for problems that were once considered to be difficult. These systems 
include knowledge from a particular domain like medicine, law, civil engineering, etc. 
This data is then queries and interacted with to build solutions to the problems.  
We include the knowledge of an expert into a set of rules. The user can then provide 
data and ask questions based on this data. The user data is processed to obtain 
conclusions, using a program called inference engine. While testing the knowledge 
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based systems it is essential to test the validity of the expert’s knowledge and the 
correctness of transcription of that knowledge into a rule base. 

8.2.4 Overview 

We would begin with decision tables as they are widely used in business data 
processing and Boolean algebra is embedded in the implementation of these 
processors.  

We can reap maximum benefits of the Boolean algebra manually using the right 
conceptual tools, the Karnaugh-Veitch diagram.  

8.3 DECISION TABLES 

8.3.1 Definitions and Notation 

Table 8.1: Decision Table 

 

 

 
 RULE 1 RULE 2 RULE 3 RULE 4 

CONDITION 1 YES NO NO NO 

CONDITION 2 NO YES NO - 

CONDITION 3 NO NO NO - 

CONDITION 4 YES YES NO YES 

ACTION 1 YES YES NO NO 

ACTION 2 NO NO YES NO 

ACTION 3 NO NO NO YES 

 

 

 

CONDITION 
STUB 

ACTION STUB 

CONDITION ENTRY 

ACTION ENTRY 

Table 8.1 is a limited decision entry table. It comprises of four areas called the 
condition stub, the condition entry, the action stub and the action entry. Each column 
of the table is a rule that specifies the condition under which the actions listed in the 
action stub will be taken. The condition stub is a list of names of conditions. A rule 
specifies whether a condition should or should not be met for the rule to be satisfied. 
“YES” means that the condition must be met, “NO” means that the condition must not 
be met, and “-” means that the condition does not have a role to play in the condition. 
The action stub names the actions the routine will take or initiate if the rule is 
satisfied. If the action entry is “YES,” the action will be taken; if “NO,” the action will 
not be taken. Table 8.1 can be translated as under: 

1a. Action 1 will be taken if the condition 1 and 4 are satisfied and if conditions 2 and 
3 are not met (rule1), or condition 2 and 4 are met and condition 1 and 3 are not met 
(rule2). 

Condition is an alternate word for predicate: either a predicate in a specification or c 
control-flow predicate in a program. A condition is satisfied means that the predicate 
is true. Similarly, for “not met” and “false”. 
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In addition to the actions specified we need to mention the default action that needs to 
be taken when all the other rules fail. Default rules for Table 8.1 are as specified in 
Table 8.2. 

Table 8.2: Default Rules for Table 8.1 

 RULE 5 RULE 6 RULE 7 RULE 8 

CONDITION 1 YES NO NO NO 

CONDITION 2 NO YES NO - 

CONDITION 3 NO NO NO - 

CONDITION 4 YES YES NO YES 

DEFAULT ACTION YES YES YES YES 

If the set of rules cover all possible combinations of TRUE/FALSE for the predicates, 
a default specification is not required. 

8.3.2 Decision Table Processors 

Decision tables can be translated into code and are a high-order language. The 
decision table’s translator checks the source decision table for consistency and 
completeness and fills in any required default rules. Decision tables as a source 
language have the virtue of clarity, direct correspondence to specifications and 
maintainability. The main deficiency is the possible object-code inefficiency. They 
prove a useful tool for business data processing. 

8.3.3 Decision Tables as a Basis for Test Case Design 

If the specification is given as a decision table, the decision table must be used for test 
case design. Before doing so, the consistency and completeness of the decision table 
must be checked by the decision-table processor; therefore, it would seem that there 
would be no need to design those test cases. It is true that the testing is not needed to 
expose contradictions and inconsistencies but to determine whether the rules 
themselves are correct and to expose possible bugs in processing on which the rules’ 
predicates depend. 

It is not always possible or desirable to implement the program as a decision table 
because the program’s logical behavior is only a part of the behavior of the decision 
table which specifies the program’s logic. Decision table may not have the necessary 
features to feature the program’s interfaces with other programs. Thus the use of 
decision tables to design tests is good when: 

1. The specification is given as a decision table or can be converted to one easily. 

2. The order in which the predicates are evaluated does not affect interpretation of 
the rules or resulting action. 

3. The order of evaluation of rules does not affect the resulting action. 

4. Once a rule is satisfied and an action is selected, no other rules need to be 
examined. 

5. If several actions can result from satisfying a rule, the order in which the actions 
are executed doesn’t matter. 

The above restrictions have further implications: (1) the rules are complete in the 
sense that every combination of predicate truth values, including the default cases, are 
inherent in the decision table, and (2) the rules are consistent if and only if every 
combination of predicate truth values result in only one action or set of actions. If the 
set of rules are incomplete, there could be a combination of inputs for which no action, 
normal or default, are specified and the routine’s action would be unpredictable. 
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8.3.4 Expansion of Immaterial Classes 

Decision table contradictions are caused by the improperly specified immaterial 
entries (-). The key to test case design based on decision tables is to expand the 
immaterial entries and to generate tests that correspond to all the subrules that result. 
If some conditions are three-way, an immaterial entry expands into three subrules. 
Similarly, an immaterial n-way case statement expands into n subrules. 

Expansion of the immaterial subcases in Table 8.2 is as given in Table 8.3. 

Table 8.3: Expansion of Immaterial Cases for Rule 4 

 RULE 4.1 RULE 4.2 RULE 4.3 RULE 4.4 

CONDITION 1 NO NO NO NO 

CONDITION 2 NO NO YES YES 

CONDITION 3 NO YES NO YES 

CONDITION 4 YES YES YES YES 

If no default rules are given, then all cases not covered by explicit rules are perforce 
default rules. If default rules are given, then we must test the specification for 
consistency. The specification is said to be complete if and only if n (binary) 
conditions expand into exactly 2n unique subrules. It is consistent if and only if all 
rules expand into subrules whose condition combinations do not match those of any 
other rules. Table 8.4 is an example of an inconsistent specification in which the 
expansion of two rules yields a contradiction. 

Table 8.4: The Expansion of an Inconsistent Specification 

 RULE 1 RULE 2 

CONDITION 1 YES NO 

CONDITION 2 - YES 

CONDITION 3 NO - 

CONDITION 4 YES YES 

ACTION 1 YES NO 

ACTION 2 NO YES 

 

 

 
  RULE 1.1 RULE 1.1 RULE 2.1 RULE 2.1 

CONDITION 1 YES YES NO NO 

CONDITION 2 NO YES YES YES 

CONDITION 3 NO NO NO YES 

CONDITION 4 YES YES YES YES 

ACTION 1 YES YES NO NO 

ACTION 2 NO NO YES YES 

8.3.5 Test Case Design 

Test case design using decision tables begins with examining the specification’s 
consistency and completeness. This is done by expanding all immaterial cases and 
checking the expanded tables. Also, make the default case explicit and treat it as just 
another set of rules for the default action. Once we have verified the specification, the 
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objective of the test cases is to show that the implementation provides the correct 
action for all combinations of predicate values. 

1. If there are k rules over n binary predicates, there are at least k cases to consider 
and at most 2n cases. Find input values to force each case. 

2. Implement test cases by changing the orders of the predicates evaluation if 
possible, by changing the input values order. Try all the pairs of interchanges for a 
representative set of values. 

3. If the implementation allows the rule evaluation order to be modified, test 
different orders for the rules by pair wise interchanges. One pair of predicate 
values per rule should be sufficient. 

4. Identify the places in the routine where rules are invoked or where the processors 
that evaluate the rules are called. Identify the places where actions are initiated. 
Instrument all paths from the rule processors to the actions so that you can show 
that the correct action was invoked for each rule. 

8.3.6 Decision Tables and Structure 

Decision tables can be used to examine a program’s structure. Figure 8.1 shows a 
program segment that consists of a decision tree. These decisions can lead to actions 
1, 2 or 3 in various combinations. The decision table for the program in Figure 8.1 is 
Table 8.5. We have given sixteen cases in Table 8.6 which is the expansion of the 
immaterial cases of Table 8.5. 

 

Figure 8.1: A Sample Program 

Table 8.5: The Decision Table Corresponding to Figure 8.1 

 RULE 1 RULE 2 RULE 3 RULE 4 RULE 5 RULE 6 

CONDITION A YES YES YES NO NO NO 

CONDITION B YES NO YES - - - 

CONDITION C - - - YES NO NO 

CONDITION D YES - NO - YES NO 

ACTION 1 YES YES NO NO NO NO 

ACTION 2 NO NO YES YES YES NO 

ACTION 3 NO NO NO NO NO YES 
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Table 8.6: Expansion of Table 8.5 

 RULE 1 RULE 2 RULE 3 RULE 4 RULE 5 RULE 6 

CONDITION A Y Y Y Y Y Y Y Y N N N N N N N N 

CONDITION B Y Y N N N N Y Y Y Y N N N Y Y N 

CONDITION C Y N N N Y Y Y N Y Y Y Y N N N N 

CONDITION D Y Y Y N N Y N N N Y Y N Y Y N N 

 Check Your Progress 1 

 Fill in the blanks: 

 1. The user data is processed to obtain conclusions, using ........................ 

 2. Contradictions in the decision tables are caused ........................ 

 3. The specification is said to be complete ........................ 

8.4 PATH EXPRESSIONS 

Logic based testing is structural if it is applied to structure and functional when it’s 
applied to a specification. In this type of testing we focus on the truth values of control 
flow predicates. 

Predicates and Relational Operators 

A predicate is implemented as a process whose outcome is a truth-functional value. 
Predicates are based on relational operators out of which the arithmetic operators are 
the most common ones. It is always better to look at the predicates from top-to-down 
from the point of view of the predicates as specified in requirements rather than from 
the point of view of predicates as implemented. 

Case Statements and Multi-Valued Logics 

Predicates need not be binary truth values alone. They could be multi-way predicates. 

Shortcomings of Predicates 

There are several things that can go wrong with predicates, especially if it has to be 
interpreted in order to express it as a predicate over input values. 

1. The wrong relational operator is used. 

2. The predicate expression of a compound predicate is incorrect. 

3. The wrong operands are used. 

4. The process leading to the predicate along its interpretation path is faulty. 

8.4.1 Boolean Algebra 

Notation 

Let us now discuss the steps needed to be taken to get the predicate expression of a 
path. 

1. Label each decision with a capital letter representing the truth value of the 
predicate. The YES/TRUE branch is named with a letter and the NO/FLASE 
branch with same letter overscored. 

2. The truth value of a path is the product of he individual labels on it. Concatenation 
or product means “AND”. 
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3. If two or more paths merge at a node, the fact is expressed using a plus (+) sign 
which stands for “OR”. 

Using this convention, the truth-functional values for several of the nodes can be 
expressed in terms of segments from previous nodes. We use the node names to 
identify the point. 
            _     _ _ _  
 N6 = A  +   A BC 
                         _                 _ _ _       _ 
 N8 = (N6)B + AB = AB + ABCB + AB 

The “OR” in boolean algebra is always an inclusive OR, which means “A or B or 
both”. The exclusive OR, which means “A or B, but not both” is AB AB+ . 

There are only two numbers in Boolean algebra: zero (0) and one (1). One means 
“always true” and zero means “always false”. 

Rules of Boolean Algebra 

X meaning AND. Also called multiplication. A statement such as AB means “A 
and B are both true.”  

+ meaning OR. “A + B” means “either A is true or B is true or both.” 
_ 
A meaning NOT. Also negation or complementation. This is read as either “not 

A” or “A bar”. The entire expression under the bar gets negated. 

Let us now have a look at the laws of Boolean algebra: 

A•B = B•A      

A + B = B + A Commutativity of AND(•), OR(+) 

A•(B•C) = (A•B)•C  

A + (B + C) = (A + B) + C Associativity of  •, + 

A = B • B = C ⇒ A = C (not Eq law) Transitivity of  “=”  

A•(B + C) = (A•B) + (A•C) Distributivity of • over + reverse direction 
= Factoring out • 

A + (B•C) = (A + B) • (A + C) Distributivity of + over • reverse direction 
= Factoring out + 

1•A = A    

0 + A = A Identity element, Unit value "1 is the 
identity "0 is the identity (unit value) for 
AND" (unit value) for OR" 

0•A = 0    

1 + A = 1 Mask "0 masks values 1 masks values 
(prevents from getting (prevents from 
getting through) AND, through) OR" 

A • A = 0  A  + A = 1 Inverse element, Cancellation 

A•A = A 

A+A = A   Simplification, Duplication 
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A = F ⇒ (A•B) = F  Absorbtion, negative Expansion of • 

A ⇒ A + B    (not Eq laws)  

A + B = F ⇒ A = F  Expansion, negative Absorbtion of + 

A B A B⋅ = +  A B A B+ = ⋅  DeMorgan's Laws 

  Negation distributes while changing 
operation reverse direction = Negation 
moves outward 

Individual letters in a Boolean algebra expression are called literals. The product of 
several literals is called a product term. Product terms can be simplified by removing 
duplicate appearances of the same literal barred or unbarred. E.g. AAB can be 
replaced by AB. 

And A B C B  can be replaced by A B C. Also, any product term that contains both the 
barred and unbarred appearance of the same literal can be removed because it is 
equivalent to 0 from the rule Inverse element or cancellation given above. Any 
Boolean expression that has been multiplied out so that it consists of the sum of 
products (e.g. AB + CDE+ FG) is said to be in the sum-of-products from.  

Examples: 

  N6 = A + ABC  

        = A + BC  

  N8 = (N6)B + A B 

        = (A + BC ) B + A B 

        = (AB + BC B + A B) 

        = (AB + B BC  + A B) 

        = (AB + 0C + A B) 

        = (AB + A B) 

        = (A + A ) B 

        = 1 × B 

        = B 

Paths and Domains 

A product term on an entry/exit path specifies a domain because each of the 
underlying predicate expression specifies a domain boundary over the input space. In 
case of compounded predicates, the Boolean path would be a sum of product terms 
like AB + CDE + FG. Because this expression was derived from one path, the 
expression also specifies a domain. However, this domain not be connected simply 
and each of the three terms could correspond to three separate disconnected 
subdomains. If any of the product term is included in the other product term, e.g. in 
ABC + AB, ABC is contained in AB, so we can always get rid of ABC through 
Boolean algebra simplification. 
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An alternate approach could have eliminated the compound predicates by providing a 
separate path for each product term. Example, we can implement AB + CDE + FG can 
be as implemented as one path using a compound predicate or as three different paths 
(AB, CDE, FG) specifying three separate domains that call the same processing 
subroutine to calculate the outcomes. 

Let’s say that we’ve written our program, design or specification such that there is 
only one product term for each domain: call these D1, D2, …, Di, … , Dm. Consider 
any two of these product terms, say DiDj. For every i not equal to j, the product terms, 
Di and Dj must be equal to zero. If the product is not equal to zero, then the domain 
are overlapping, i.e. the domain specification is contradictory. Also, the sum of all Di 
must be equal to 1 otherwise there is an ambiguity. The same will hold even if Di is 
not a simple product term but arbitrary Boolean expression resulting from compound 
predicates i.e. the domains are not simply connected. 

Test Case Design 

In principle, it is necessary to design a test case for each possible combination of 
TRUE/FALSE of the predicates. If all the predicates are uncorrelated, then each of the 
2n combinations would correspond to a different path, a different domain and their 
sum would correspond to a minimum covering set. 

We can have contradictions in a specification but not in a program, if: 

1. The routine has a single entry and a single exit. 

2. No combination of predicate values leads to non-terminating loops. 

3. There are no pieces of dangling code that leads nowhere. 

Under these cases, the Boolean expression would be just 1. If it is not we have made a 
mistake in evaluation or there are pieces of unreachable code or non-terminating code 
for some predicate value combination. 

The most complete set of test cases is the one which includes all the possible 2n 
combinations of predicate values. This is an exhaustive case but testing can be 
achieved using lesser test cases. 

Typically, we are interested in the Boolean algebra expression corresponding to paths 
from one node to another. In case of multiple nodes, we form a product of these 
simplified nodes to generate the test cases. Any one prime implicant in the Boolean 
expression covering all the paths from entry to the node is sufficient to reach the node. 
The set of paths used to reach any point of interest in the flow-graph can be 
characterized by an increasingly more thorough set of test cases: 

1. Simples: Use any prime implicant in the expression to the point of interest as a 
basis for a path. The only that must be taken are those that appear in the prime 
implicant. All predicates not appearing in the prime implicant chosen can be set 
arbitrarily. 

2. Prime Implicant Cover: Pick input values so that there is at least one path for 
each prime implicant at the node of interest. 

3. All terms: Test all expanded terms for that node. 

4. Path dependence: The truth value of a predicate depends upon the path taken to 
reach that predicate. 
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8.4.2 Boolean Equations 

Loops can be complicating as we may have to solve a Boolean equation to determine 
which predicate value combinations lead us where. Also, the Boolean expression for 
the end point does not necessarily equal 1. Consider the flow-graph of Figure 8.2. 
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 Figure 8.2: A Flow Graph with Loops 

From this graph we have, 

  N4 = B  + F1 

  F1 = B C  N7 

  N4 = B  + B C  N7 

        = B  

  N6 = B + AN4 

        = B + A  B 

        = A + B 

  N7 = A  N4 + F3 

        = A B  + F3 

  F3 = N7 B  C A  

  N7 = A B  + A B  C N7 

        = A B  

  N2 = N6 + F4 

       = A + B + F4 

  F4 = A B CN7 

  N2 = A + B + A B CN7 

        = A + B 

The fact that the exit expression is not equal to 1 implies that there are loops. Feeding 
the logic back into itself this way, usually in the interest of saving some code or some 
work, leads to simultaneous Boolean equations, which are rarely as easy to solve as 
the given example; it may also lead to dead paths and infinite loops. 
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Check Your Progress 2 

1. Define literals. 

 ....................................................................................................................... 

 ....................................................................................................................... 

2. (A + B).(C+D) = ....................... 

3. A predicate could have a truth-functional value or multiple values. 
(True/False) 

8.5 KV CHARTS 

8.5.1 The Problem 

While dealing with Boolean expressions involving more than three variables, the 
designing and generation of test cases using the Boolean algebraic express becomes 
difficult. The Karnaugh-Veitch chart reduces the Boolean algebraic manipulations to 
graphical trivia. 

8.5.2 Simple Forms 

Figure 8.3 shows all the Boolean functions of a single variable in the form of KV 
charts. 

 
     

A 
        0     1
 0 0 0

The function is never true. 
A 

        0     1
 A 0 1

The function is true when A is true. 
A 

        0     1
 A 1 0

The function is true when A is false. 
A 

        0     1
 1 1 1

The function is always false. 

Figure 8.3: KV Charts for Functions of a Single Variable 

These charts show all possible truth values that the variable A can have. The heading 
above each box denotes this fact. A “1” means the variable’s value is “1” or TRUE. A 
“0” means the variable’s value is “0” or FALSE. The entry in the box (0 or 1) 
specifies if the function that the chart represents is true or false for that value of the 
variable. 

 

 

 



 

113
Logic based Testing

 

A   B - NAND 
   A
B  0 1
 0 1  
 1   

 
AB – A and not B 

   A
B  0 1
 0  1
 1   

A B – B and not A 
   A
B  0 1
 0   
 1 1  

A B – A and B 
   A
B  0 1
 0   
 1  1

A 
   A
B  0 1
 0  1
 1  1

B 
   A
B  0 1
 0   
 1 1 1

 
A 

   A
B  0 1
 0 1  
 1 1  

 
B 

   A
B  0 1
 0 1 1
 1   

Figure 8.4: Functions of Two Variables 
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A If and only if B 
   A
B  0 1
 0 1  
 1  1

 
AB + A B 

Exclusive OR 
   A
B  0 1
 0  1
 1 1  

A + B 
   A
B  0 1
 0  1
 1 1 1

 
A + B 

A implies B 
   A
B  0 1
 0 1  
 1 1 1

 
A + B 

   A
B  0 1
 0 1 1
 1 1  

 
B + A 

B implies A 
   A
B  0 1
 0 1 1
 1  1

Universal False 
   A
B  0 1
 0   
 1   

Universal True 
   A
B  0 1
 0 1 1
 1 1 1

Figure 8.5: More Functions of Two Variables 
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Figure 8.4 shows eight of the sixteen possible functions of two variables. Each box 
corresponds to the combination of values of the variables for the row and column of 
that box. Variables for the row and column of that box. The single entry for AB in the 
first chart is interpreted that way because both A and B value for the box is 0. 
Similarly, AB corresponds to A =1 and B = 0, A B to A = 0 and B = 1, and AB to A = 
1 and B = 1. The next four functions have two non-zero entries each and each entry 
forms an adjacent pair either horizontally or vertically but not diagonally. Any 
variable that changes in either the horizontal or vertical direction does not appear in 
the expression. 

Figure 8.5 shows the remaining eight functions of two variables. The interpretation of 
these charts is a combination of interpretation of previous charts. 

Because KV charts are Boolean functions, two charts over the same variable, arranged 
in the same way, their product is the term-by-term product, their sum is the term-by-
term sum, and the negation of a chart is obtained by reversing all the 0 and 1 entries in 
the chart. In order to simplify an expression using a KV chart, we fill each term one at 
a time, and then look for adjacencies and to rewrite the expression in terms of the 
largest grouping you can find that cover all the 1’s in the chart. 

8.5.3 Three Variables 

KV charts for three variables are shown below. Here we have named the columns in 
an unusual way like “00, 01, 11, 10” rather than with the expected “00, 01, 10, 11”. 
This is because this labeling preserves the adjacency properties of the chart. 
Adjacency can also go around the corners. Two boxes are said to be adjacent if they 
change in only one bit and two groupings are adjacent if they change in only one bit. 
A three variable KV chart can have groupings of 1, 2, 4 and 8 boxes as illustrated in 
Figure 8.6. 

 

 

 

 

Contd... 

 

 
   



  

116 
Software Testing 

 

 

 

        

 

Figure 8.6: Three Variable Functions 
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8.5.4 Four Variables and More 

The same principle holds for four and more variables. A four variable chart and its 
adjacencies are shown below: 

 

Figure 8.7: Four Variable Functions 

8.6 SPECIFICATIONS 

Specification should be logically consistent and complete otherwise design and coding 
is useless. The procedure for specification includes the following: 

1. Rewrite the specification using consistent terminology. 
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2. Identify the predicates on which the cases are based. Name them with suitable 
letters like A, B and C. 

3. Rewrite the specifications in English using logical connectives like AND, OR and 
NOT, as suitable. 

4. Convert the rewritten specification into an equivalent set of Boolean expressions. 

5. Identify the default action and cases, if any are specified. 

6. Enter the Boolean expression in a KV chart and check for consistency. If the 
specifications are consistent, there will be no overlaps, except for the cases that 
result in multiple actions. 

7. Enter the default cases and check for consistency. 

8. If all boxes are covered, the specification is complete. 

9. If the specification is incomplete or inconsistent, translate the corresponding 
boxes of KV chart back to English and get a clarification, explanation or revision. 

10. If the default case were not specified explicitly, translate the default cases back to 
English and get a confirmation. 

8.6.1 Finding and Translating Logic 

We begin writing the specifications by getting rid of ambiguous terms, words and 
phrases and expressing it all as a long list of IF..THEN statements. We then identify 
the actions and name them as A1, A2, A3, etc. Break the actions into small units first. 
All actions at this point should be mutually exclusive in the sense that no one action is 
part of another. If some actions always occur in combination with other actions and 
vice versa, then lump them into one action and give it a new name. Now substitute the 
action names in the sentences. Identify the “OR” component of all sentences and 
rewrite them so that each “OR” is on a separate line. 

This process should be done as early as possible because the translation of the 
specification into Boolean algebra may require discussion among the specifiers, 
especially if contradictions and ambiguities emerge. If the specification has been 
given as a decision table or in another equally unambiguous tabular form, then most of 
the above work has been avoided and so have much of the potential confusion and the 
bugs that inevitably result therefrom. 

8.6.2 Ambiguities and Contradictions 

Here is a specification: 

  A1 = BCD  + AB CD 

  A2 = A C D + A C D + AB C + A B C 

  A3 = B D + B C D 

  ELSE = B C + ABCD  

The KV chart for this specification is as under: 

   AB   
  00 01 11 10 
 00 4 1 1, 2 2 
CD 01  3 2, 3 1, 2 
 11 4 3 3 4 
 10 4 3 3 4 
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There is an ambiguity, may be related to the default case: A  B  C  D is missing. The 
specification layout seems to suggest that this term also belongs to the default action. 
Thus, we need to answer the following questions: 

1. Is A  B  C   D also to be a considered a default action? 

2. Shall the default action be rephrased as B  C + A  B ? 

There may be various boxes in a KV chart that call for multiple actions. If the 
specification does not mention these actions explicitly then these actions should be 
considered as conflict.  

If no explicit default action has been specified, then fill the KV chart with explicit 
entries for the explicitly specified actions, negate the entire chart and present the 
equivalent expression as a statement of the default. We also need to be suspicious of 
nearly complete adjacencies. For example, if a term contains seven adjacent boxes and 
lacks only one to make a full eight adjacency, question the missing box. 

It is also useful to represent the new specification as a table which shows all cases 
explicitly and also as a compact version in which you have taken advantage of the 
possibility of simplifying the expression by using a KV chart. 

8.6.3 Don’t-Care and Impossible Terms 

There are two kinds of so-called impossible conditions: (1) the condition cannot be 
created or is seemingly contradictory or improbable; and (2) the condition results from 
our insistence on forcing a complex, continuous world into a binary, logical world. 
Most program illogical conditions are of the second kind. These so-called impossible 
cases help in simplifying the program the implements logic. We can take the 
advantage of an impossible case only when we are sure that there is a data validation 
or protection in a preceding module or when appropriate illogical condition checks are 
made elsewhere in the program. Although this practice is dangerous and must be 
avoided but even if you do it, you must do it right: 

1. Identify and confirm all the “impossible “and “illogical” cases. 

2. Fill the KV chart first with the possible cases and then with the impossible ones. 
Use the combined symbol 0 which can be interpreted as 0 or 1 depending upon the 
value which simplifies the logic the most. These terms are called don’t-care terms, 
because the case if presumed impossible and we don’t care which value is used. 

8.7 LET US SUM UP 

To organize statements in a specification, use decision tables as an intermediate step 
towards a more revealing equivalent Boolean algebra expression. 

Label the links following binary decisions with a weight that corresponds to the 
predicate’s logical value, and evaluate the Boolean expressions to the nodes of 
interest. 

Simplify the resulting expressions or solve equations and then simplify if you cannot 
directly express the Boolean function for the node in terms of the path predicate 
values. 

The Boolean expression for the exit node should equal 1. If it does not, or if 
attempting to solve for it leads to a loop of equations, then there are conditions under 
which the routine will loop indefinitely. The negation of the exit expression specifies 
all the combinations of predicate values that will lead to the loop or loops. 
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By deriving a test case from the expansion of any prime implicant in the Boolean 
expression for that node, we can reach any node of interest. 

The set of all paths from the entry to a node can be obtained by expanding all the 
prime implicants of the Boolean expression that corresponds to that node. A branch-
covering set of paths, however, may not require all the terms of the expansion. 

Use KV charts for expressions involving up to six variables. 

Be careful while translating English into Boolean algebra. Retranslate and discuss the 
retranslation of the algebra with the specifier. 

Question all missing entries, question overlapped entries if there was no explicit 
statement of multiple actions, and question all almost-complete groups. 

Don’t take advantage of don’t-care cases or impossible cases unless you are willing to 
pay the maintenance penalties; but if you must, get the maximum payoff by making 
the resulting logic as simple as you can and document all instances in which you take 
advantage. 

8.8 LESSON END ACTIVITIES 

1. How can we use decision tables to carry out logic-based testing? 

2. Mention the three operators included in Boolean algebra. 

3. What are Boolean equations? Simplify the following Boolean expressions. 

 (a) (A + C)(AD + A D ) + AC + C 

 (b) A (A + B) + (B + AA)(A + B ) 

8.9 KEYWORDS 

Adjacency: Two boxes are said to be adjacent if they change in only one bit and two 
groupings are adjacent if they change in only one bit.  

Sum-of-products form: Any Boolean expression that has been multiplied out so that it 
consists of the sum of products (e.g. AB + CDE+ FG) is said to be in the sum-of-
products from.  

Literals: Individual letters in a Boolean algebra expression are called literals.  

Product term: The product of several literals is called a product term. 

8.10 QUESTIONS FOR DISCUSSION 

1. What are the KV charts? What are their uses? Explain the various kinds of KV 
charts. 

2. Simplify the expressions given in section 8.8 question (3) above using KV charts. 

3. What are don’t care terms and how can they be useful? 

 Check Your Progress: Model Answers 

 CYP 1 

 1. inference engine 

 2. immaterial entries (-) 

 3. if and only if n (binary) conditions expand into exactly 2n unique subrules 

Contd... 
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 CYP 2 

 1. Individual letters in a Boolean algebra expression are called literals. 

 2. A.C + A.D + B.C + B.D 

 3. True 
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9.0 AIMS AND OBJECTIVES 
After studying this lesson, you would be able to understand:  

 State Graphs – States, Inputs and Transitions, outputs, State tables, time versus 
sequences, software implementation 
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 Good state graphs and bad – state bugs, transition bugs, output errors, encoding 
bugs 

 State testing – Bug impacts, principles, limitations and tools 

9.1 INTRODUCTION  

The state-graph and its associated state table are useful models for describing software 
behavior. The finite-state machine is a functional testing tool and testable design 
programming tool. It is as fundamental to software engineering as Boolean algebra. 
State testing is based on the use of these machine models for software structure, 
software behavior or specifications of software behavior. They can be implemented as 
a table driven software which can serve as a powerful design option. They are most 
commonly used by testers for functional testing like system testing. 

9.2 STATE GRAPHS 

9.2.1 States 

State is a combination of circumstances or attributes belonging for the time being to a 
person or thing. A program that detects the character sequence “ZCZC” can be in any 
of these states: 

1. Neither ZCZC nor any part of it has been detected. 

2. Z has been detected. 

3. ZC has been detected. 

4. ZCZ has been detected. 

5. ZCZC has been detected. 

States are represented as nodes. States can be numbered or may be identified by words 
or whatever is convenient. Figure 9.1 shows a typical state graph. 

 

ZCZZCZNONE

A, C 

Z C Z
C ZCZC

Z

A

C, A

A 

Z, C, A

Z  

Figure 9.1: One-time ZCZC Sequence-Detector State Graph 

The number of states in a computer is 2 raised to the power of number of bits in the 
computer; that is, all the bits in main memory, registers, discs, tapes and so on. State 
graphs are mostly useful for simpler functional models involving at the most a few 
dozen states and only a few factors. 

9.2.2 Inputs and Transitions 

State changes or transitions as a result of inputs. These transitions are represented as 
links joining the states. The input that causes the transition is marked on the link. 
There is an outlink from ever state for every input. If different inputs in a state cause a 
transition to the same state, instead of drawing a bunch of parallel links we can 
abbreviate the notation by listing the several inputs as in : “input1, input2, input3, …”. 
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A finite state machine is an abstract device that can be represented by a state graph 
having a finite number of states and a finite number of transitions between states. 

The ZCZC detection example can have the following kinds of inputs: 

1. Z 

2. C 

3. Any character other than Z or C, which we’ll denote by A. 

The state graph of Figure 9.1 can be interpreted as follows: 

1. If the system is in the “NONE” state, any input other than a Z will keep it in that 
state. 

2. If a Z is received, the system transitions to the “Z” state. 

3. IF the system is in the “Z” state and a Z is received, it will remain in the “Z” state. 
If a C is received, it will go back to the “ZC” state; if any other character is 
receive, it will go back to the “NONE” state because the sequence has been 
broken. 

4. A Z received in the “ZC” state progresses to the “ZCZ” state, but any other 
character breaks the sequence and causes a return to the “NONE” state. 

5. A C received in the “ZCZ” state completes the sequence and the system enters the 
“ZCZC” state. A Z breaks the sequence and causes a transition back to the “Z” 
state; any other character causes a return to the “NONE” state. 

6. The system stays in the “ZCZC” state no matter what is received. 

Thus, a state-graph represents all this in a compact form. 

9.2.3 Outputs 

An output can be associated with any link. Outputs are denoted by letters or words and 
separated from inputs by a slash as follows: “input/output”. Outputs are also link 
weights. If every input associated with a transition causes the same output, then denote 
it as: “input1, input2, …, input3/output.” If there are many different combinations of 
inputs and outputs, it’s best to draw a separate parallel link for each output. Let us 
now have a look at the tape control recovery routine state graph given in Figure 9.2. 

 

765

4

3

2

1

OK / NONE

OK / 
NONE

ERROR / 
REWRITE

OK / 
NONE

ERROR / REWRITE

ERROR / 
ERSAE

OK / 
NONEERROR / 

REWRITE

OK / NONE ERROR / ERSAE ERROR / OUT

OK / NONE

 

Figure 9.2: Tape Control Recovery Routine State Graph 

The state graph shown in Figure 9.2 there are only two kinds of inputs (OK, ERROR) 
and four kinds of outputs (REWRITE, ERASE, NONE, OUT-OF-SERVICE). 
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9.2.4 State Tables 

As big state graphs are cluttered and difficult to follow, its more convenient to 
represent the state graph as a table (the state table or state-transition table), specifies 
the states, inputs, transitions and outputs. The following conventions are used: 

1. Each row of the table corresponds to a state. 

2. Each column corresponds to an input condition. 

3. The box at the intersection of row and column specifies the next state (the 
transition) and the output, if any. 

9.2.5 Time versus Sequence 

State graphs do not represent time but only sequence. A transition may take 
microseconds or centuries; a system could be in one state for milliseconds and another 
for eons, or vice versa; the state graph would be the same because it does not include 
the time factor. 

9.2.6 Software Implementation 

There is hardly any direct correspondence between a program and a process described 
by a state graph. The state graph represents the total behavior consisting of the 
transport, software, executive, status returns, interrupts, etc. There is no simple 
correspondence between lines of code and states. The state table forms the basis for a 
widely used implementation. Four tables are involved: 

1. A table or process that converts the input values to a compact list 
(INPUT_CODE_TABLE). 

2. A table that specifies the next state for every combination of state and input code 
(TRANSITION_TABLE). 

3. A table or case statement that specifies the output or output code, if any, 
associated with every state-input combination (OUTPUT_TABLE). 

4. A table that stores the present state of very device or process that uses the same 
state table – e.g., one entry per tape transport (DEVICE_TABLE). 

The routine operates in the following manner: 

1. Fetch the present state from memory. 

2. Fetch the present input value from memory. If it is numerical, use it directly 
otherwise encode it to a numeric value. 

3. Combine the present state and the input code to obtain a pointer of the transition 
table and its logical image. 

4. The output table contains a pointer to the routine to be executed for that state-
input combination. The routine is invoked. 

5. The same pointer is used to fetch the new state value which is then stored. 

Input Encoding and Input Alphabet 

Only the simplest finite-state machines can use the inputs directly. We may not be 
interested in using these input characters directly but in some attributes represented by 
the characters, e.g. in the ZCZC detector, we are only interested in three different 
types of inputs i.e. “Z”, “C” and “OTHER” and not all the 256v possible ASCII 
characters. 
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The alternative to input encoding is a huge state graph and tables because there must 
be one outlink in every state for every possible different input. Input encoding 
compresses the cases and therefore the state graph. Another advantage is that we can 
run the machine from a mixture of otherwise incompatible input events. The set of 
different encoded input values is called the input alphabet. 

Output Encoding and Output Alphabet 

There can be different types of incompatible outputs for transitions of a finite sate 
machine. Very rarely do we have a single character output for a finite state machine. 
We might want to get a string as output, call a subroutine, transfer control to a low-
level finite-state machine or do nothing. Thus, we only have limited distinct actions 
that can be taken using which we can encode into a convenient output alphabet. 

State Codes and State-Symbol Products 

In a finite state machine, if there are n states and k different inputs, both numbered 
from zero, and the state code and input code are S and I respectively, then the pointer 
value is Sk+ I or In + S depending upon how we want to organize the tables. Finite-
state machines are used in time critical applications because they have lower response 
times. A faster implementation is to use a binary number of states and a binary 
number of input codes and to form a pointer by concatenating the state and input code. 
The speed comes at the cost of some other disadvantages. The table no longer remains 
compact. The other disadvantage is size as the excessive table size could be a 
problem. For these reasons, there is another encoding of the combination of the state 
number and the input code into pointer. The term state-symbol product is used to 
mean the value obtained by any scheme used to convert the combined state and input 
code into a pointer to a compact table. Talking about “states” and “stat-codes” in the 
context of finite state machines we refer to hypothetical integer used to denote the 
state and not the actual form of the state code that could be a result of an encoding 
process. Similarly, “state-symbol product” means the hypothetical or actual 
concatenation used to combine the state and input codes. 

Application Comments for Designers 

An explicit state-table implementation is advantageous when either the control 
functionality is likely to change in future or when the system has many similar control 
functions which are slightly different. Such type of implementation is more common 
in telecommunications. This technique can provide fast response time, however, is not 
effective for very small or big state graphs. 

Application Comments for Testers 

Testers are concerned only with the way to design test cases using state graphs or 
state-table representations and not with the implementation of the approach. Also, at 
times the tests developed from a state-graph can help the developers to re-consider 
their implementation technique. 

Check Your Progress 1 

Fill in the blanks: 

1. The set of different encoded input values is called the ......................... 

2. The box at the intersection of row and column in a state table specifies the 
.................... and the .......................... 
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9.3 STATE GRAPHS: GOOD AND BAD 

A state graph can be judged as good or bad depending upon these facts: 

1. The total number of states is equal to the product of the possibilities of factors that 
make up the state. 

2. For every state and input there is exactly one transition specifies to exactly one, 
possibly the same, state. 

3. For every transition there is one output action specified. That output could be 
trivial, but at least one output does something sensible. 

4. For every state there is a sequence of inputs that will drive the system back to the 
same state. 

Figure 9.3 shows the examples of some improper state-graphs. 

 

A 2 B

1 1,2

A 2 B

1 

C

1

2
1,2

A B

1,2 1,2

A 2 B

1 1

A 1,2 B

1 2

1

State B can never be left. The initial 
state can never be entered again.

State C cannot be entered.

State A and B are not reachable.

No transition is specified for an input 
of 2 when in state B.

Two transitions are specified for an 
input of 1 in state A.

 

Figure 9.3: Improper State Graphs 

A state graph must have at least two different input codes. With one input code, there 
are only a few kinds of state-graphs we can build:  a bunch of disconnected individual 
states; disconnected strings of states the end in loops and their variations; or a strongly 
connected state graph in which all states are arranged in one grand loop. The latter can 
be implemented easily using a counter that resets at some specific values and thus, 
does not need an elaborate modeling apparatus. 

In state testing we ignore outputs because the states and transitions are of primary 
importance to us. Two state graphs with identical states, inputs and transitions can 
have vastly different outputs, yet they could be identical from the point of view of 
state-testing. 

9.3.1 State Bugs 

Number of States 

The number of states in a state graph is the number of states we choose to recognize or 
model. The state is recorded as a combination of values of variables that appear in the 
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database. Failure to account for all the states is one of the most common type of bug 
that can be modeled using a state-graph. Because an explicit state-table mechanism is 
not typical, the opportunities for missing states exist. We can find the number of states 
as follows: 

1. Identify all the component factor of the state. 

2. Identify all the allowable values for each factor. 

3. The number of states is the product of the number of allowable values of all the 
factors. 

Impossible States 

Some combinations of factors appear to be impossible. The difference between a 
programmer’s state count and the tester’s state count is mainly due to a difference in 
opinion of the concerning “impossible states”. 

The “impossible” states can occur as the states we deal with inside computers are not 
the states of the real world but rather a numerical representation of those. 

Equivalent States 

Two states are said to be equivalent if every sequence of inputs starting from one state 
produces exactly the same sequence of outputs when started from the other state. 
Figure 9.4 depicts the situation. 

 

 

 

 

 

 

 Figure 9.4: Equivalent States 

Let us assume that a system is in state S, an input a causes a transition to state A and 
an input b causes a transition to state B. If starting from state A, every possible 
sequence of inputs produces exactly the same sequence of outputs that would occur 
when starting from B, then there is no way for an outsider to determine in which of the 
two states, the system is in, without observing the record of the states. The state graph 
can be reduced to that of Figure 9.5. 

 

Figure 9.5: Equivalent States of Figure 9.4 Merged 
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Equivalent states can be identified using the following steps: 

1. The rows corresponding to the two states are identical w.r.t. input/output/next 
state but the name of the next state could differ. The two states are differentiated 
only by the input as in Figure 9.6. 

2. There are two sets of rows which, except for the state names, have identical state 
graphs w.r.t. transitions and outputs. The two sets can be merged as in Figure 9.7. 
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Figure 9.6: Equivalent States 
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(a) 

STATE A B 

I A1/Y B1/U 

A1 A1/Y A2/X 

B1 B1/Y B2/X 

A2 B2/W A3/U 

B2 A2/W B3/U 

A3 A3/U B2/Y 

B3 B3/U A2/Y 
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I
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(c) 

Figure 9.7: Merged Equivalent States 
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Bugs result due to unjustifiable merger of seemingly equivalent states. The two states 
or two set of states appear to be equivalent because the programmer has failed to carry 
through to a proof of equivalence for every input sequence. 

9.3.2 Transition Bugs 

Unspecified and Contradictory Transitions 

Every input-state combination must have a specified transition. If not possible, then 
there must be a mechanism that prevents the input from occurring in that state. The 
transition may not be specified because of an oversight. There must be exactly one 
transition for every combination of input and state. 

A system cannot have contradictions or ambiguities because the program will do 
something for every input irrespective if it is right or wrong. Even if the state does not 
change, it is considered as a transition to the same state. 

Unreachable States 

An unreachable state is the one that cannot be reached. It is not impossible. There may 
be transitions from an unreachable state to other states because the state became 
unreachable itself because of some wrong transitions. 

An isolated unreachable state here and there, which relates to impossible combinations 
of real-world state-determining conditions, is acceptable, but if you find groups of 
connected states that are isolated from others, there’s cause for concern. There are two 
possibilities: (1) there is a bug i.e. some transitions are missing. (2) The transitions are 
there, but you don’t know about it, i.e. there are other inputs and associated transitions 
to reckon with. Such hidden transitions are caused by software operating at a higher 
priority level or by interrupting processing. 

Dead States 

A dead state (or a set of dead states) is a state that once entered cannot be left. It may 
not necessarily be a bug. A set of states may appear to be dead because the program 
has two modes of operation. In the first mode it goes through an initialization process 
that consists of several states. After this, it goes to a strongly connected set of working 
states, which, within the context of the routine, cannot be exited. The initialization 
states are unreachable to the working states, and the working states ate dead to the 
initialization states. Legitimates dead states are rare. They occur during system-level 
issues and device handlers. 

9.3.3 Output Errors 

Output could be incorrect, although inputs, states and transitions are correct and there 
are no dead and unreachable states. Output actions must be verified independent of 
states and transitions. The most likely reason for an incorrect output could be an 
incorrect call to the routine that executes the output. This is a minor bug. Bugs in the 
state graphs are more serious because they tend to be related to fundamental control-
structure problems. If the routine is implemented as a state table, both types of bugs 
are comparably severe. 

9.3.4 Encoding Bugs 

The encoding bugs for input coding, output coding, state codes and state-symbol 
product formation can exist not only in an explicit finite state machine but also when 
the finite state machine is implicit. 
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Make sure not to use the programmer’s state numbers and/or input codes. The 
behavior of a finite-state machine is invariant under all encodings. Let us assume that 
the states are numbered from 1 to n. If the states are numbered using an arbitrary 
permutation, the finite state machine remains unchanged – similarly for input and 
output codes. Thus, if we present our version of the finite state machine with a 
different encoding and if the programmer objects to the renaming or claims that 
behavior is changed as a result, then there must be some encoding bugs in the 
machine. 

The implementation of the fields as a group of bytes or bits gives you the potential 
size of the code. If the number of code values is less than this potential, then there is 
an encoding process going on. 

Check Your Progress 2 

 State whether the following statements are true or false: 

1. Finite-state machines are not used in time critical applications. 

2. Encoding bugs can occur only in an implicit finite state machine. 

3. Output actions must be verified independent of states and transitions. 

4. Transitions from a dead state to other states are possible. 

9.4 STATE TESTING 

9.4.1 Impact of Bugs 

One or more of the following symptoms indicate the presence of bugs: 

1. Incorrect number of states. 

2. Incorrect transition for a given state-input combination. 

3. Incorrect output for a given transition. 

4. Pairs or sets of states that are accidentally made equivalent. 

5. States or set of states that are split to create inequivalent duplicates. 

6. States or sets of states that have become dead. 

7. States or set of states that have become unreachable. 

9.4.2 Principles 

The strategy for state testing is similar to that of flow graph testing. It is impractical to 
go through every path in a state graph as is the case with a flow graph. A path in a 
state graph is a succession of transitions caused due to a sequence of inputs. Coverage 
is ensured by passing through each link. Assume a state as an initial state and it must 
be possible to every possibles state and back to the initial state when starting from the 
initial state. It is still impractical to do this for these reasons: 

1. In the early phase of testing it is not possible to thoroughly cover the graph 
because of bugs. 

2. Later, during maintenance, testing objectives are understood, and only a few states 
and transitions need to be tested. A complete coverage is waste of time. 

3. Verification of a long test sequence is difficult. 

The starting point of state testing is: 

1. Define a set of covering input sequence that get back to the initial state when 
starting from the initial state. 



  

132 
Software Testing 

2. For each step in each input sequence, define the expected next state, the expected 
transition, and the expected output code. 

A set of tests then comprises of three sets of sequences: 

1. Input sequences. 

2. Corresponding transitions or next-state names. 

3. Output sequences. 

9.4.3 Limitations and Extensions 

Like the flow-graph model, the state-transition coverage in a state-graph model does 
not ensure complete testing. It is not essential to consider any sequence longer than the 
total number of states. 

Chou defines a hierarchy of paths and methods to produce covers of tests for 
combining paths. The simplest one is called the “0-switch”, which corresponds to 
testing each transition individually. The next in the hierarchy is the testing of 
transition sequences comprising of two transitions called “1 switch”.  The maximum 
length switch is an n – 1 switch, where n stands for the number of states. This 
mechanism shows that, in general, a 0 switch cover can catch output errors but may 
not detect transition errors. The exact theory to catch specified kinds of state-graph 
errors using sufficient number of tests is still not developed completely. Thus, we have 
the following experience: 

1. Identify the factors that contribute to the state, calculating the total number of 
states and comparing this to the designer’s notion reveals some bugs. 

2. Insisting on a justification for all supposedly dead, unreachable and impossible 
states and transitions catches few more bugs. 

3. Insisting on an explicit specification of the transition and output for every 
combination of input and state catches many more bugs. 

4. A set of input sequences that provide coverage of all nodes and links is a 
mandatory minimum requirement. 

5. In executing state tests, it is must to provide the means to record the state 
sequence resulting from the input sequence and not only outputs that result from 
the input sequence. 

9.4.4 What to Model 

The representation of every program using a state graph is possible as every 
combination of software and hardware can be modeled using these. The state graph is 
a behavioral model. It is functional rather than structural and is far removed from the 
code. As a testing method, it is a bottom line method that ignores structural detail to 
focus on behavior. State testing guarantees bigger payoffs during the test design rather 
than running, as compared to any other test method. As the tests can be constructed 
from a design specification in advance of the coding, they help catching deep bugs 
early which prove to be more expensive during later stages. State testing can prove 
useful in the following cases: 

1. In the processing where the output depends upon the occurrence of one or more 
sequence of events e.g. detection of specified input sequences, sequential format 
validation and other situation in which the order of input is important. 

2. Most protocols between systems, between humans and machines, between 
components of a system. 
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3. Device drivers such as tapes and discs that have complicated retry and recovery 
procedures if the action depends on state. 

4. Transaction flows where the transactions are such that they can stay in the system 
indefinitely. 

5. High-level control functions within an operating system. 

6. The behavior of the system w.r.t. resource management and what it will do when 
various levels of resource utilization are reached. 

7. A set of menus and ways that can go from one to other. 

8. Whenever a feature is directly explicitly implemented as one or more state-
transition tables. 

9.4.5 Getting the Data 

The majority job of an independent tester’s life is to get the data on which the model is 
to be based. State testing has an intensive data-gathering phase and needs time to 
resolve issues. This happens because most of the participants don’t realize that there’s 
an important state-machine behavior. 

9.5 LET US SUM UP 

State testing is mainly a functional testing tool whose payoff is best in the early phases 
of design. 

A program cannot have ambiguous transitions or outputs, but a specification can and 
does. Use a state table to verify the specification’s validity. Count the states. 

Insist on a specification of transition and output for every combination of input and 
states. Apply a minimum set of covering tests. 

Instrument the transitions to capture the sequence of states and not just the sequence 
of outputs. 

9.6 LESSON END ACTIVITIES 

1. Describe transition bugs giving reference to the unreachable and dead states. 

2. List the scenarios in which state testing prove to be more useful. 

3. What are the limitations of state graph testing? How can they be dealt with? 

9.7 KEYWORDS 

Dead state: A dead state (or a set of dead states) is a state that once entered cannot be 
left. 

Unreachable state: An unreachable state is the one that cannot be reached. It is not 
impossible.  

Equivalent states: Two states are said to be equivalent if every sequence of inputs 
starting from one state produces exactly the same sequence of outputs when started 
from the other state. 

Number of states: The number of states in a state graph is the number of states we 
choose to recognize or model. 

State table: A table that specifies the states, inputs, transitions and outputs is called a 
state table or a state-transition table. 
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State: State is a combination of circumstances or attributes belonging for the time 
being to a person or thing. 

9.8 QUESTIONS FOR DISCUSSION 

1. What are equivalent states? How can they be identified? 

2. List down the ways to categorize a state-graph as good or bad. 

3. What is a state? Explain the transition of states in a state graph. 

Check Your Progress: Model Answers 

 CYP 1 

 1. Input alphabet 

 2. next state (the transition), output (if any) 

 CYP 2 

 1. False 

 2. False 

 3. True 

 4. True 

9.9 SUGGESTED READINGS 
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10.0 AIMS AND OBJECTIVES 

After studying this lesson, you would be able to understand:  

 The Graphical User Interfaces (GUI) 

 To test a client-server based architecture 

 How to test documentation and help facilities 

 How to test real time systems 
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The testing methods discussed in preceding sections can be applied across all 
environments, architectures and applications, but unique guidelines and approaches to 
testing are sometimes warranted. In this lesson we will discuss testing guidelines for 
specialized environments, architectures and applications that are commonly by 
software engineers. 

10.2 TESTING GUIs 

Graphical User Interfaces (GUIs) present interesting challenges for software 
engineers. Because of the reusable components provided as a part of GUI 
development environments, the creation of the user interface has become less time 
consuming and more precise. But, at the same time, the complexity of GUIs has 
grown, leading to more difficulty in the design and execution of test cases. 

A series of tests can be derived and applied to test the GUIs because many GUIs have 
the same look and feel. Tests addressing specific data and program objects relevant to 
the GUI can be derived with the help of a finite state modeling graphs. 

Because of a large number of permutations associated with the GUI operations, testing 
should be done using automated tools. A wide variety of GUI testing tools has been 
made available in the market over the past few years. 

Once a user interface prototype has been created, it must be evaluated to check if it 
meets the user needs. Evaluation can include a range of tests ranging from informal 
test drive, in which a user provides impromptu feedback to a formally designed study 
that uses statistical methods for the evaluation of questionnaires completed by a group 
of end-users. Design modifications are made based on user inputs, and the next level 
of prototype is created. The evaluation cycle continues until no further modifications 
are required to the interface design.  

Although the prototyping technique is effective, but is not always possible to evaluate 
the quality of a user interface before a prototype is built. If potential problems are 
uncovered and corrected early, the number of loops through the evaluation cycle will 
be reduced and development time will shorten. A number of evaluation criteria can be 
applied to a design model at the time of early design reviews once the design model of 
the interface has been created. These are: 

1. The length and complexity of the written specification of the system and its 
interface provide an indication of the amount of learning required by users of the 
system. 

2. The number of tasks specified and the average number of actions per task provide 
an indication of interaction time and the overall efficiency of the system. 

3. The number of actions, tasks and systems states indicated by the design model 
implies the memory load on users of the system. 

4. Interface style, help facilities and error handling protocol provide general 
indication of the complexity of the interface and the degree to which it will be 
accepted by the user. 

Once the prototype is built the designer can collect a variety of qualitative and 
quantitative data that will assist him in evaluating the interface. 
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10.2.1 GUI Test Strategies 

Test Principles Applied to GUIs 

Our proposed approach to testing GUIs is guided by several principles, most of which 
should be familiar. By following these principles we will develop a test process which 
is generally applicable for testing any GUI application. Note that the proposed test 
approach does not cover white-box testing of application code in any depth. This 
approach concentrates on GUI errors and using the GUI to exercise tests so is very-
oriented toward black-box testing. 

 Focus on errors to reduce the scope of tests: We intend to categorise errors into 
types and design test to detect each type of error in turn. In this way, we can focus 
the testing and eliminate duplication. 

 Separation of concerns (divide and conquer): By focusing on particular types of 
error and designing test cases to detect those errors, we can break up the complex 
problem into a number of simpler ones. 

 Test design techniques where appropriate: Traditional black box test techniques 
that we would use to test forms based applications are still appropriate. 

 Layered and staged tests: We will organise the test types into a series of test 
stages. The principle here is that we bring tests of the lowest level of detail in 
components up front. We implement integration tests of components and test the 
integrated application last. In this way, we can build the testing up in trusted 
layers. 

 Test automation...wherever possible: Automation most often fails because of 
over-ambition. By splitting the test process into stages, we can seek and find 
opportunities to make use of automation where appropriate, rather than trying to 
use automation everywhere. 

High Level Test Process 

An outline test process is presented in Figure 10.1. The high-level test process. We 
can split the process into three overall phases: Test Design, Test Preparation and Test 
Execution. In this paper, we are going to concentrate on the first stage: Test Design, 
and then look for opportunities for making effective use of automated tools to execute 
tests. 

 

Figure 10.1: The High Level Test Process 
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Types of GUI errors 

We can list some of the multifarious errors that can occur in a client/server-based 
application that we might reasonably expect to be able to test for using the GUI. The 
list in Table 10.1 is certainly not complete, but it does demonstrate the wide variety 
error types. Many of these errors relate to the GUI, others relate to the underlying 
functionality or interfaces between the GUI application and other client/server 
components. 

Table 10.1: The Variety of Errors Found in GUI Applications 

• Data validation  

• Incorrect field defaults  

• Mishandling of server process failures  

• Mandatory fields, not mandatory  

• Wrong fields retrieved by queries  

• Incorrect search criteria  

• Field order  

• Multiple database rows returned, single 
row expected  

• Currency of data on screens  

• Window object/DB field correspondence 

• Correct window modality?  

• Window system commands not 
available/don’t work  

• Control state alignment with state of data 
in window?  

• Focus on objects needing it?  

• Menu options align with state of data or 
application mode?  

• Action of menu commands aligns with 
state of data in window  

• Synchronisation of window object 
content  

• State of controls aligns with state of data 
in window?  

By targeting different categories of errors in this list, we can derive a set of different 
test types that focus on a single error category of errors each and provide coverage 
across all error types. 

The four stages are summarised in Table 10.2 below. We can map the four test stages 
to traditional test stages as follows: 

 Low level - maps to a unit test stage.  

 Application - maps to either a unit test or functional system test stage.  

 Integration - maps to a functional system test stage.  

 Non-functional - maps to non-functional system test stage.  

The mappings described above are approximate. Clearly there are occasions when 
some ‘GUI integration testing’ can be performed as part of a unit test. The test types in 
‘GUI application testing’ are equally suitable in unit or system testing. In applying the 
proposed GUI test types, the objective of each test stage, the capabilities of developers 
and testers, the availability of test environment and tools all need to be taken into 
consideration before deciding whether and where each GUI test type is implemented 
in your test process. 

The GUI test types alone do not constitute a complete set of tests to be applied to a 
system. We have not included any code-based or structural testing, nor have we 
considered the need to conduct other integration tests or non-functional tests of 
performance, reliability and so on. Your test strategy should address all these issues. 
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Table 10.2: Proposed GUI Test Stages 

Stage Test Types 

Low Level • Checklist testing  

• Navigation  

Application • Equivalence Partitioning  

• Boundary Values  

• Decision Tables  

• State Transition Testing  

Integration • Desktop Integration  

• C/S Communications  

• Synchronisation  

Non-Functional • Soak testing  

• Compatibility testing  

• Platform/environment  

10.2.2 Types of GUI Tests 

Checklist Testing 

Checklists are a straightforward way of documenting simple re-usable tests. Not 
enough use is made of checklist driven testing, perhaps because it is perceived to be 
trivial, but it is their simplicity that makes them so effective and easy to implement. 
They are best used to document simple checks that can be made on low-level 
components. Ideally, these checks can be made visually, or by executing very simple 
or easily remembered series of commands. The types of checks that are best 
documented in this way are: 

 Programming/GUI standards covering standard features such as:  

 window size, positioning, type (modal/non-modal)  

 standard system commands/buttons (close, minimise, maximise etc.)  

 Application standards or conventions such as:  

 standard OK, cancel, continue buttons, appearance, colour, size, location  

 consistent use of buttons or controls  

 object/field labelling to use standard/consistent text.  

These checks should be both simple to document and execute and can be used for 
standalone components so that programmers may make these checks before they 
release the code for integration. 

Navigation Testing 

In the context of a GUI, we can view navigation tests as a form of integration testing. 
Typically, programmers create and test new windows in isolation. Integration of a new 
window into an application requires that the application menu definition and 
invocations of the window from other windows be correctly implemented. The build 
strategy determines what navigation testing can be done and how. To conduct 
meaningful navigation tests the following are required to be in place: 

 An application backbone with at least the required menu options and call 
mechanisms to call the window under test.  
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 Windows that can invoke the window under test.  

 Windows that are called by the window under test.  

Obviously, if any of the above components are not available, stubs and/or drivers will 
be necessary to implement navigation tests. If we assume all required components are 
available, what tests should we implement? We can split the task into steps: 

 For every window, identify all the legitimate calls to the window that the 
application should allow and create test cases for each call.  

 Identify all the legitimate calls from the window to other features that the 
application should allow and create test cases for each call.  

 Identify reversible calls, i.e. where closing a called window should return to the 
‘calling’ window and create a test case for each.  

 Identify irreversible calls i.e. where the calling window closes before the called 
window appears.  

There may be multiple ways of executing a call to another window i.e. menus, 
buttons, keyboard commands. In this circumstance, consider creating one test case for 
each valid path by each available means of navigation. 

Note that navigation tests reflect only a part of the full integration testing that should 
be undertaken. These tests constitute the ‘visible’ integration testing of the GUI 
components that a ‘black box’ tester should undertake. 

Application Testing 

Application testing is the testing that would normally be undertaken on a forms-based 
application. This testing focuses very much on the behaviour of the objects within 
windows. The approach to testing a window is virtually the same as would be adopted 
when testing a single form. The traditional black-box test design techniques are 
directly applicable in this context. 

A brief summary of the most common techniques and some guidelines for their use 
with GUI windows are presented in the table below: 

Table 10.3: Traditional Test Techniques 

Technique Used to test 

Equivalence Partitions and 
Boundary Value Analysis 

• Input validation  

• Simple rule-based processing  

Decision Tables • Complex logic or rule-based processing  

State-transition testing • Applications with modes or states where processing 
behaviour is affected  

• Windows where there are dependencies between 
objects in the window.  

Desktop Integration Testing 

It is rare for a desktop PC or workstation to run a single application. Usually, the same 
machine must run other bespoke applications or shrink wrapped products such as a 
word processor, spreadsheet, electronic mail or Internet based applications. 
Client/server systems assume ‘component based’ architecture so they often treat other 
products on the desktop as components and make use of features of these products by 
calling them as components directly or through specialist middleware. 

 



 

143
Testing Specialized Environments, 

Architecture and Applications

We define desktop integration as the integration and testing of a client application 
with these other components. Because these interfaces may be hidden or appear 
‘seamless’ when working, the tester usually needs to understand a little more about the 
technical implementation of the interface before tests can be specified. The tester 
needs to know what interfaces exist, what mechanisms are used by these interfaces 
and how the interface can be exercised by using the application user interface. 

To derive a list of test cases the tester needs to ask a series of questions for each 
known interface: 

 Is there a dialogue between the application and interfacing product (i.e. a sequence 
of stages with different message types to test individually) or is it a direct call 
made once only?  

 Is information passed in both directions across the interface?  

 Is the call to the interfacing product context sensitive?  

 Are there different message types? If so, how can these be varied?  

In principle, the tester should prepare test cases to exercise each message type in 
circumstances where data is passed in both directions. Typically, once the nature of 
the interface is known, equivalence partitioning, boundary values analysis and other 
techniques can be used to expand the list of test cases. 

Client/Server Communication Testing 

Client/Server communication testing complements the desktop integration testing. 
This aspect covers the integration of a desktop application with the server-based 
processes it must communicate with. The discussion of the types of test cases for this 
testing is similar to section Desktop Integration, except there should be some attention 
paid to testing for failure of server-based processes. 

In the most common situation, clients communicate directly with database servers. 
Here the particular tests to be applied should cover the various types of responses a 
database server can make. For example: 

 Logging into the network, servers and server-based DBMS.  

 Single and multiple responses to queries.  

 Correct handling of errors (where the SQL syntax is incorrect, or the database 
server or network has failed)  

 Null and high volume responses (where no rows or a large number of rows are 
returned). 

The response times of transactions that involve client/server communication may be of 
interest. These tests might be automated, or timed using a stopwatch, to obtain 
indicative measures of speed. 

Synchronisation Testing 

There may be circumstances in the application being tested where there are 
dependencies between different features. One scenario is when two windows are 
displayed; a change is made to a piece of data on one window and the other window 
needs to change to reflect the altered state of data in the database. To accommodate 
such dependencies, there is a need for the dependent parts of the application to be 
synchronised. 
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Examples of synchronisation are when: 

 The application has different modes - if a particular window is open, then certain 
menu options become available (or unavailable).  

 If the data in the database changes and these changes are notified to the 
application by an unsolicited event to update displayed windows.  

 If data on a visible window is changed and makes data on another displayed 
window inconsistent.  

In some circumstances, there may be reciprocity between windows. For example, 
changes on window A trigger changes in window B and the reverse effect also applies 
(changes in window B trigger changes on window A). 

In the case of displayed data, there may be other windows that display the same or 
similar data which either cannot be displayed simultaneously, or should not change for 
some reason. These situations should be considered also. To derive synchronisation 
test cases: 

 Prepare one test case for every window object affected by a change or unsolicited 
event and one test case for reciprocal situations.  

 Prepare one test case for every window object that must not be affected - but 
might be.  

Non-functional Testing 

The tests described in the previous sections are functional tests. These tests are 
adequate for demonstrating the software meets it’s requirements and does not fail. 
However, GUI applications have non-functional modes of failure also. We propose 
three additional GUI test types (that are likely to be automated). 

Soak Testing 

In production, systems might be operated continuously for many hours. Applications 
may be comprehensively tested over a period of weeks or months but are not usually 
operated for extended periods in this way. It is common for client application code and 
bespoke middleware to have memory-leaks. Soak tests exercise system transactions 
continuously for an extended period in order to flush out such problems.  

These tests are normally conducted using an automated tool. Selected transactions are 
repeatedly executed and machine resources on the client (or the server) monitored to 
identify resources that are being allocated but not returned by the application code. 

Compatibility Testing 

Whether applications interface directly with other desktop products or simply co-exist 
on the same desktop, they share the same resources on the client. Compatibility Tests 
are (usually) automated tests that aim to demonstrate that resources that are shared 
with other desktop products are not locked unnecessarily causing the system under test 
or the other products to fail. 

These tests normally execute a selected set of transactions in the system under test and 
then switch to exercising other desktop products in turn and doing this repeatedly over 
an extended period. 

Platform/Environment Testing 

In some environments, the platform upon which the developed GUI application is 
deployed may not be under the control of the developers. PC end-users may have a 
variety of hardware types such as 486 and Pentium machines, various video drivers, 
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Microsoft Windows 3.1, 95 and NT. Most users have PCs at home now-a-days and 
know-how to customise their PC configuration. Although your application may be 
designed to operate on a variety of platforms, you may have to execute tests of these 
various configurations to ensure when the software is implemented; it continues to 
function as designed. In this circumstance, the testing requirement is for a repeatable 
regression test to be executed on a variety of platforms and configurations. Again, the 
requirement for automated support is clear so we would normally use a tool to execute 
these tests on each of the platforms and configurations as required. 

10.2.3 Improving GUI Testability 

The GUI Testing Challenge 

It is clear that GUIs present a challenge to testers because they appear to be inherently 
more difficult to test. The flexibility of GUIs invites programmers to pass on this 
flexibility to end users in their applications. Consequently, users can exercise the 
application code in ways never envisaged by the programmers and which are likely to 
be released untested. 

If testability is the ease with which a tester can specify, prepare, execute and analyze 
tests, it is arguable that it is possible for programmers to build systems using GUIs 
that cannot be tested. 

It is difficult to specify tests because much of the underlying functionality in a GUI 
application is undocumented. Because of the event-driven nature of GUIs, a 
considerable amount of programming effort is expended on dealing with hidden 
interactions that come to light during the informal programmer testing so tend to go 
undocumented. 

It is difficult to prepare tests because the number tests required to exercise paths 
through the application which a user might follow has escalated dramatically. If we 
consider using menus, function keys and mouse movements to exercise system 
features, the number of tests increased further. 

It is difficult to execute tests. Using a manual pointing device is virtually unrepeatable 
and certainly error prone. Creating tests which stimulate hidden interactions, set or 
amend visible (or invisible) GUI objects is troublesome. Separating tests of 
application code from the GUI elements of the operating system is tricky.  

It is difficult to analyse tests because there is constant change on the screen and behind 
the screen. Windows on which results are displayed may appear and all other visible 
windows may be refreshed simultaneously making visual inspection difficult. 
Expected results may not be directly displayed but on hidden windows. Attributes of 
objects to be verified may be invisible or difficult to detect by eye. Windows that 
display invalid results may be hidden by other windows or on windows that are 
minimised. 

GUI Design for Testability 

We make the following recommendations to GUI designers aimed at improving 
testability. We suggest that the most straightforward way of implementing them is to 
include checks on these design issues in checklist test cases. Some of these 
recommendations impact the freedom users have to use software in certain ways, but 
we believe that if the application structure and organisation is well designed, the user 
will have little need to make unusual choices. 

1. Where applications have modes of operation so that some features become 
meaningless or redundant, then these options on menus should be greyed-out or 
disabled in some other way.  
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2. Unless there are specific requirements to display the same data on multiple 
windows the designer should avoid having to build in dependencies between 
windows to eliminate ‘displayed data’ inconsistencies.  

3. Navigation between windows should be hierarchic, (in preference to anarchic) to 
minimise the number of windows that might be open at once and to reduce the 
number of paths through the system.  

4. Unless there is an impact on usability, windows should be modal to reduce the 
number of paths through the system and reduce window testing to a simpler, 
forms-like test process.  

5. Unless there is an impact on usability, dependencies between objects on windows 
should be avoided or circumvented by splitting user transactions into multiple 
modal windows.  

6. The number of system commands (maximise, minimise, close, restore) available 
on windows should be reduced to a minimum.  

7. Functionality which is accessed by equivalent button clicks, function keys and 
menu options should be implemented using the same function-call to reduce the 
possibility of errors and the need to always test all three mechanisms.  

8. Instrumentation should be implemented in code to provides information on 
application interfaces to other desktop products or server-based processes and 
should be an option which can be turned on or off by testers.  

9. Instrumentation should be implemented to provide information on the content of 
unsolicited events from other applications and also to simulate these unsolicited 
events for test purposes.  

10.3 TESTING OF CLIENT-SERVER ARCHITECTURE 

Client-server architectures represent a significant challenge for software tests. The 
distributed nature of client/server environments, the performance issue associated with 
transaction processing, the potential presence of a number of different hardware 
platforms, the complexity of network communication, the need to service multiple 
clients from a centralized (or distributed) database, and the coordination requirements 
imposed on the server all combine to make testing of client/server software 
architecture considerably more difficult than standalone applications. In fact, recent 
studies indicate a significant increase in the testing time and cost when client/server 
environments are developed. 

In general, the testing of client/server software occurs at three different levels:  
(i) individual client applications are tested in a disconnected mode, the operation of 
the server and the underlying network are not considered; (ii) the client software and 
associated server applications are tested in concert, but network operations are not 
explicitly exercised; (iii) the complete client/server architecture including the network 
operations and performance, is tested. 

Although many different types of tests are conducted at each of these levels of detail, 
the following testing approaches are commonly used: 

 Application function tests: The functionality of client applications is tested in a 
standalone fashion. 

 Server tests: The coordinated and data management functions of the server are 
tested. Server performance (overall response time and data throughput) is also 
considered. 
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 Database tests: The accuracy and integrity of data stored by the server is tested. 
Transactions posted by client applications are examined to ensure that data are 
properly stored, updated and retrieved. Archiving is also tested. 

 Transaction tests: A series of tests are created to ensure that each class of 
transactions is processed according to requirements. Tests focus on the correctness 
of processing and also on performance issues (e.g. transaction processing times 
and transaction volumes). 

 Network communication tests: These tests verify that communication among the 
nodes of the network occurs correctly and that message passing, transactions, and 
related network traffic occur without error. Network security tests may also be 
conducted as part of these tests. 

In order to accomplish these testing approaches, it is recommended to develop 
operation profiles derived from client/server usage scenarios. An operational profile 
indicates how different types of users interoperate with the client/server system i.e. the 
profiles provide a “pattern of usage” that can be applied when tests are designed and 
executed. 

10.3.1 Client Server Software 

Client server software requires specific forms of testing to prevent or predict 
catastrophic errors. Servers go down, records lock, I/O (Input/Output) errors and lost 
messages can really cut into the benefits of adopting this network technology. Testing 
addresses system performance and scalability by understanding how systems respond 
to increased workloads and what causes them to fail. 

Software testing is more than just review. It involves the dynamic analysis of the 
software being tested. It instructs the software to perform tasks and functions in a 
virtual environment. This examines compatibility, capability, efficiency, reliability, 
maintainability, and portability. A certain amount of faults will probably exist in any 
software. However, faults do not necessarily equal failures. Rather, they are areas of 
slight unpredictability that will not cause significant damage or shutdown. They are 
more errors of semantics. Therefore, testing usually occurs until a company reaches an 
acceptable defect rate that doesn’t affect the running of the program or at least won’t 
until an updated version has been tested to correct the defects.  

Since client-server technology relies so heavily on application software and 
networking, testing is an important part of technology and product development. 
There are two distinct approaches when creating software tests. There is black box 
testing and white or glass box testing. Black box testing is also referred to as 
functional testing. It focuses on testing the internal machinations of whatever is being 
tested, in our case, a client or server program. When testing software, for example, 
black box tests focus on I/O. The testers know the input and predicted output, but they 
do not know how the program arrives at its conclusions. Code is not examined, only 
specifications are.  

Black box testing does not require special knowledge of specific languages from the 
tester. The tests are unbiased because designers and testers are independent of each 
other. They are primarily conducted from the user perspective to ensure usability. 
However, there are also some disadvantages to black box testing. The tests are 
difficult to design and can be redundant. Also, many program paths go uncovered 
since it is realistically impossible to test all input streams. It would simply take too 
long.  

White box testing is also sometimes referred to as glass box testing. It is a form of 
structural testing that is also called clear box testing or open box testing. As expected, 
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it is the opposite of black box testing. It focuses on the internal workings of the 
program and uses programming code to examine outputs. Furthermore, the tester must 
know what the program is supposed to do and how it’s supposed to do it. Then, the 
tester can see if the program strays from its proposed goal. For software testing to be 
complete both functional/black and structural/white/glass box testing must be 
conducted. 

10.3.2 Client Server Testing Techniques 

Risk Driven Testing and Performance Testing  

There are a variety of testing techniques that are particularly useful when testing client 
and server programs. Risk driven testing is time sensitive, which is important in 
finding the most important bugs early on. It also helps because testing is never 
allocated enough time or resources. Companies want to get their products out as soon 
as possible. The prioritization of risks or potential errors is the engine behind risk 
driven testing. In risk driven testing the tester takes the system parts he/she wants to 
test, modules or functions, for example, and examines the categories of error impact 
and likelihood. Impact, the first category, examines what would happen in the event of 
a break down. For example, would entire databases be wiped out or would the 
formatting just be a little off? Likelihood estimates the probability of this failure in the 
element being tested. Risk driven testing prioritizes the most catastrophic potential 
errors in the service of time efficiency.  

Performance testing is another strategy for testing client and server programs. Simply 
put, performance testing evaluates system components, such as software, around 
specific performance parameters, such as resource utilization, response time, and 
transaction rates. It is also called load testing or stress testing. In order to performance 
test a client-server application, several key pieces of information must be known.  

For example, the average number of users working simultaneously on a system must 
be quantified, since performance testing most commonly tests performance under 
workload stress. Testers should also determine maximum or peak user performance or 
how the system operates under maximum workloads. Bandwidth is another necessary 
bit of information, as is most users’ most frequent actions. Performance testing also 
validates and verifies other performance parameters such as reliability and scalability. 
Performance testing can establish that a product lives up to performance standards 
necessary for commercial release. It can compare two systems to determine which one 
performs better. Or they can use profilers to determine the program’s behavior as it 
runs. This determines which parts of the program might cause the most trouble and it 
establishes thresholds of acceptable response times. 

10.3.3 Testing Aspects 

Unit testing, Integration testing, and System testing  

There are different types of software testing that focus on different aspects of IT 
architecture. Three in particular are particularly relevant to client server applications. 
These are unit testing, integration testing, and system testing. A unit is the smallest 
testable component of a program. In object–oriented programming, which is 
increasingly influencing client-server applications, the smallest unit is a class. 
Modules are made up of units.  

Unit testing isolates small sections of a program (units) and tests the individual parts 
to prove they work correctly. They make strict demands on the piece of code they are 
testing. Unit testing documentation provides records of test cases that are designed to 
incorporate the characteristics that will make the unit successful. This documentation 
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also contains positive and negative uses for the unit as well as what negative behaviors 
the unit will trap. However, unit testing won’t catch all errors. It must be used with 
other testing techniques. It is only a phase of three-layer testing, of which unit testing 
is the first.  

Integration testing, sometimes called I&T (Integration and Testing), combines 
individual modules and tests them as a group. These test cases take modules that have 
been unit tested, they test this input with a test plan. The output is the integrated 
system, which is then ready for the final layer of testing, system testing. The purpose 
of integration testing is to verify functionality, performance, and reliability. There are 
different types of integration testing models. For example, the Big Bang model is a 
time saver by combining unit-tested modules to form an entire software program (or a 
significant part of one). This is the ‘design entity’ that will be tested for integration.  

However, record of test case results is of the essence, otherwise further testing will be 
very complicated. Bottom up integrated testing tests all the low, user level modules, 
functions and procedures. Once these have been integrated and tested, the next level of 
modules can be integrated an tested. All modules at each level must be operating at 
the same level for this type of testing to be worthwhile. In object-oriented 
programming, of which client server applications increasingly are, classes are 
encapsulations of data attributes and functions. Classes require the integration of 
methods. Ultimately, integration testing reveals any inconsistencies within or between 
assemblages or the groupings of modules that are integrated through testing plans and 
outputs.  

System testing is the final layer of software testing. It is conducted once the system 
has been integrated. Like integration testing, it falls within the category of black box 
testing. Its input is the integrated software elements that have passed integration 
testing and the integration of the software system with any hardware systems it may 
apply to. System testing detects inconsistencies between assemblages (thereby testing 
integration) and in the system as its own entity. System testing is the final testing front 
and therefore the most aggressive. It runs the system to the point of failure and is 
characterized as destructive testing. Here are some of the areas that system testing 
covers usability, reliability, maintenance, recover, compatibility, and performance. 

10.3.4 Measures of Completeness 

In software testing there are two measures of completeness, code coverage and path 
coverage. Code coverage is a white box testing technique to determine how much of a 
program’s source code has been tested. There are several fronts on which code 
coverage is measured.  

For example, statement coverage determines whether each line of code has been 
executed and tested. Condition coverage checks the same for each evaluation point. 
Path coverage establishes whether every potential route through a segment of code has 
been executed and tested. Entry/Exit coverage executes and tests every possible call to 
a function and return of a response. Code coverage provides a final layer of testing 
because it searches for the errors that were missed by the other test cases. It 
determines what areas have not been executed and tested and creates new test cases to 
analyze these areas. In addition, it identifies redundant test cases that won’t increase 
coverage. 
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Check Your Progress 1 

Fill in the blanks: 

1. Tests addressing specific data and program objects relevant to the GUI can 
be derived with the help of .............................. 

2. Network security tests may also be conducted as part of ................... tests. 

 

10.4 TESTING DOCUMENTATION AND HELP 
FACILITIES 

The term software testing conjures images of large number of test cases prepared to 
exercise computer programs and the data that they manipulate. The testing must also 
extend to the third element of the software configuration – documentation. 

Errors in documentation can be devastating to the acceptance of the program as errors 
in data or source code. It becomes very frustrating if one follows a user-guide or an 
online help facility exactly and ultimately gets results or behaviors that do not match 
with those predicted in the documentation. Thus, it is necessary to test the 
documentation and it must be a part of every software test plan. 

Documentation testing can be approached in two phases: (1) review and inspection, 
examines the documentation for editorial clarity and (2) live test, uses the 
documentation in conjunction with the use of the actual program. 

10.4.1 Software Reviews 

Software reviews are filers that are applied through the stages of the software 
engineering process to report errors and defects that can be removed at that stage.  
It further refines the activities of analysis, design and coding. 

Various types of reviews are conducted as a part of software engineering. Each of 
these has its own importance. An informal meeting at coffee is a kind of review to 
discuss technical issues. A formal presentation of software design to customers, 
management and technical staff is also a kind of review. A formal technical review or 
walkthrough is the most effective of all these reviews from the view of QA. It is 
conducted by software engineers, for software engineers to improve the software 
quality. 

10.4.2 Test Deliverables 

Test Documentation: Documentation describing plans for, or results of, the testing of 
a system or component, Types include test case specification, test incident report, test 
log, test plan, test procedure, test report. 

Software Testing documentation, or Test Deliverables, may consist of the following 
documents:  

 Master test plan: Sometimes it is possible to write separate documents for test 
planning: Unit test plan, Integration test plan, System test plan and Acceptance 
test plan. 

 Test plan: A high-level document that defines a software testing project so that it 
can be properly measured and controlled. It defines the test strategy and organized 
elements of the test life cycle, including resource requirements, project schedule, 
and test requirements. 

 Test cases design: A set of test inputs, executions, and expected results developed 
for a particular objective. 

 



 

151
Testing Specialized Environments, 

Architecture and Applications

 Test procedures: A document, providing detailed instructions for the [manual] 
execution of one or more test cases. Often called - a manual test script. 

 Test logs: A chronological record of all relevant details about the execution of a 
test. 

 Test data: The actual (set of) values used in the test or that are necessary to 
execute the test. 

 Test summary report 

 Automated test scripts 

 Incident reports 

 Incident log 

But as a minimum you must have test strategy, test cases and test summary report. 

10.4.3 Samples of Test Deliverables 

A sample of a Master Software Test Plan document contents 

1. Introduction    

 1.1  Purpose    

 1.2  Background    

 1.3  Scope    

 1.4  Project Identification    

2.  Software Structure  

 2.1  Software Risk Issues   

3.  Test Requirements 

 3.1  Features Not to Test 

 3.2  Metrics 

4.  Test Strategy 

 4.1  Test Cycles 

 4.2  Planning Risks and Contingencies    

5.  Testing Types    

 5.1  Functional Testing   

 5.2  User Interface Testing   

 5.3  Configuration Testing   

 5.4  Installation Testing   

 5.5  Volume Testing    

 5.6  Performance Testing   

 5.7  Tools    

6.  Resources     

 6.1  Staffing 

 6.2   Training Needs 

Contd…. 
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8.  Deliverables    

 8.1  Test Assets 

 8.2  Exit criteria    

 8.3.  Test Logs and Defect Reporting   

9.  References 

A good test strategy is the most important and can in some cases replace all test plan 
documents. The purpose of a test strategy is to clarify the major tasks and challenges 
of the test project. 

Sample of Test Strategy document contents 
 

1. INTRODUCTION  

 1.1 PURPOSE  

 1.2 FUNCTIONAL OVERVIEW  

 1.3 CRITICAL SUCCESS FACTOR  

 1.4 TESTING SCOPE (TBD)  

           Inclusions  

           Exclusions  

 1.5 TEST COMPLETION CRITERIA  

2. TIMEFRAME  

3. RESOURCES  

 3.1 TESTING TEAM SETUP  

 3.2 HARDWARE REQUIREMENTS  

 3.3 SOFTWARE REQUIREMENTS  

4. APPLICATION TESTING RISKS PROFILE  

5. TEST APPROACH  

 5.1 STRATEGIES  

 5.2 GENERAL TEST OBJECTIVES 

 5.3 APPLICATION FUNCTIONALITY  

 5.4 APPLICATION INTERFACES  

 5.5 TESTING TYPES  

  5.5.1 Stability  

  5.5.2 System  

  5.5.3 Regression  

  5.5.4 Installation  

  5.5.5 Recovery  

 
Contd….. 
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  5.5.6 Configuration  

  5.5.7 Security  

6. BUSINESS ARES FOR SYSTEM TEST  

7. TEST PREPARATION  

 7.1 TEST CASE DEVELOPMENT  

 7.2 TEST DATA SETUP  

 7.3 TEST ENVIRONMENT  

  7.3.1 Database Restoration Strategies 

8. TEST EXECUTION  

 8.1 TEST EXECUTION PLANNING  

 8.2 TEST EXECUTION DOCUMENTATION  

 8.3 PROBLEM REPORTING  

9. STATUS REPORTING  

 9.1 TEST EXECUTION PROCESS  

 9.2 PROBLEM STATUS  

10. HANDOVER FOR USER ACCEPTANCE TEST TEAM  

11. DELIVERABLES  

12. APPROVALS  

13. APPENDICES  

 13.1 APPENDIX A (BUSINESS PROCESS RISK ASSESSMENT)  

 13.2 APPENDIX B (TEST DATA SETUP)  

 13.3 APPENDIX C (TEST CASE TEMPLATE)  

 13.4 APPENDIX D (PROBLEM TRACKING PROCESS) 

 

Sample of Test Evaluation Report document contents  

1.  Objectives  

2.  Scope  

3.  References 

4.  Introduction  

5.  Test Coverage  

6.  Code Coverage  

7.  Suggested Actions 

8.  Diagrams 
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User Acceptance Test (UAT) Plan Table of Contentss  
 

1. INTRODUCTION  

 1.1 PURPOSE  

 1.2 FUNCTIONAL OVERVIEW  

 1.3 CRITICAL SUCCESS FACTORS  

 1.4 UAT SCOPE  

 1.5 TEST COMPLETION CRITERIA  

2. TIMEFRAME  

3. RESOURCES  

 3.1 TESTING TEAM  

 3.2 HARDWARE TESTING REQUIREMENTS  

 3.3 SOFTWARE TESTING REQUIREMENTS  

4. TEST APPROACH  

 4.1 TEST STRATEGY  

 4.2 GENERAL TEST OBJECTIVES:  

 4.3 BUSINESS AREAS FOR SYSTEM TEST  

 4.4 APPLICATION INTERFACES  

5. TEST PREPARATION  

 5.1 TEST CASE DEVELOPMENT  

 5.2 TEST DATA SETUP  

 5.3 TEST ENVIRONMENT  

6. UAT EXECUTION  

 6.1 PLANNING UAT EXECUTION  

 6.2 TEST EXECUTION DOCUMENTATION  

 6.3 ISSUE REPORTING  

7. HANDOVER FOR UAT ACCEPTANCE COMMITTEE  

8. ACCEPTANCE COMMITTEE 

9. DELIVERABLES  

10. APPROVALS  

11. APPENDICES 

 11.1 APPENDIX A (TEST CASE TEMPLATE)  

 11.2 APPENDIX B (SEVERITY STRATEGY)  

 11.3 APPENDIX C (ISSUE LOG) 
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Check Your Progress 2 

 State whether the following statements are true or false: 

1. It is possible to test the client/server architecture only in the standalone 
environment and not in the distributed one. 

2. Errors in documentation can lead to errors in data or source code.  

3. Test cases related to documentation testing can be included in every 
software test plan. 

4. Software reviews are conducted at different staged to get rid of errors 
encountered at that stage of software evolution. 

10.5 TESTING OF REAL-TIME SYSTEMS 

The time-dependent, asynchronous nature of many real-time applications adds a new 
potential difficult element to the testing mix-time. Test case designer must consider 
both the conventional test cases and also event handling, timing of the data and the 
parallelism of the tasks that handle the data. In many situations, a real time system in 
one state will generate correct results when fed with test data, while the same system 
may lead to error using the same test data while in another state. 

Also, the relation between the real-time software and its hardware components can 
also cause testing problems. Software tests must consider the impact of hardware 
faults on software processing. Such faults can be extremely difficult to simulate 
realistically. 

Comprehensive test case design methods for real-time systems continue to evolve. 
However, a four-step strategy can be proposed: 

 Task Testing: The first step in testing real-time software is to test each task 
independently i.e. conventional test cases are designed and executed for each task. 
Each task is executed independently during these tests. This type of testing 
uncovers logical and functional errors but not the ones related to timing and 
behavior. 

 Behavioral Testing: Using system models created with automated tools, we can 
simulate the behavior of a real-time system and examine its behavior as a result of 
external events. These analysis activities can serve as the basis for the test case 
design which are carried out when the real-time software has been built. 

 Inter-task Testing: Once errors in individual tasks have been isolated from the 
errors in the system behavior, testing shifts to the time-related errors. 
Asynchronous tasks are tested with different data rates and processing load to 
determine if inter-task synchronization errors will occur. In addition, tasks which 
communicate using message queues or data store are tested to uncover errors in 
the sizing of these data storage areas. 

 System Testing: Full ranges of tests are carried out after the software and 
hardware are integrated to reveal the errors at the software/hardware interface. 
Most real-time system process interrupts. Thus, testing the handling of these 
Boolean events is essential. 

Also, global data areas that are used to transfer information as part of interrupt 
processing should be tested to assess the potential for the generation of side effects. 
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Specialized testing methods encompass a broad array of software capabilities and 
application areas. 

Testing for graphical user interfaces, client/server architectures, documentation and 
help facilities, and real-time systems each require specialized guidelines and 
techniques. 

10.7 LESSON END ACTIVITIES 

1. Why it is difficult to test GUI based applications? How are they tested? 

2. What is client-server architecture? What are the problems encountered while 
testing these applications? 

3. List the various testing approaches of client-server architecture based applications. 

10.8 KEYWORDS 

Informal Meeting: An informal meeting at coffee is a kind of review to discuss 
technical issues.  

Formal Presentation: A formal presentation of software design to customers, 
management and technical staff is also a kind of review.  

Formal Technical Review: A formal technical review or walkthrough is the most 
effective of all these reviews from the view of QA. 

GUI: Graphical User Interface 

10.9 QUESTIONS FOR DISCUSSION 

1. Discuss the strategy for testing real-time systems. 

2. How is the testing of real-time systems different from the other applications? 

3. Discuss the different software review techniques. 

 Check Your Progress: Model Answers 

 CYP 1 

 1. Finite state modeling graphs 

 2. Network communication 

 CYP 2 

 1. False 

 2. True 

 3. True 

 4. True 
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11 
TESTING TACTICS AND DEBUGGING 

CONTENTS 

11.0  Aims and Objectives 

11.1  Introduction 

11.2 Strategic Approach to Testing and Strategic Issues 

 11.2.1  Verification and Validation 

 11.2.2  Organizing for Software Testing 

 11.2.3  Software Testing Strategy 

 11.2.4  Strategic Issues 

11.3  Unit Testing 

 11.3.1  Advantages of Unit Testing 

11.4  Integration Testing 

 11.4.1  Top-down Integration 

 11.4.2  Bottom-up Integration 

 11.4.3  Regression Testing 

 11.4.4  Smoke Testing 

 11.4.5  Documentation for Integration Testing 

11.5  Validation Testing 

 11.5.1  Configuration Review 

 11.5.2  Alpha and Beta Testing 

11.6  System Testing 

 11.6.1  Recovery Testing 

 11.6.2  Security Testing 

 11.6.3  Stress Testing 

 11.6.4  Performance Testing 

11.7  Debugging 

 11.7.1  Debugging Techniques 

 11.7.2  Debugging Approaches 

11.8 Let us Sum up 

11.9 Lesson End Activities 

11.10 Keywords 

11.11  Questions for Discussion 

11.12  Suggested Readings 
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After studying this lesson, you would be able to understand:  

 Strategic approach towards testing and issues 

 Unit testing, system testing, validation testing, integration testing and its concepts 

 Debugging approaches and processes 

11.1 INTRODUCTION  
The way in which test cases are executes is as important as the way in which the test 
cases are designed. A strategy for software testing is developed by the project 
manager, software engineers and testing specialists.  

A proper testing strategy is important because often testing accounts far more project 
effort than any other software engineering activity. If it is conducted arbitrarily, it 
results in the wastage of time and effort and can lead to unnoticed errors later on. 

Testing normally begins with testing individual small components which are later 
integrated to carry out the integration testing of the complete software as a whole. 
Finally, a series of high order test cases are executed once the program is fully 
operational to uncover the errors in the requirements.  

A test specification contains the software team’s approach to testing by defining a plan 
to describe the overall strategy and a procedure that describes specific testing steps 
and the tests that will be conducted. 

11.2 STRATEGIC APPROACH TO TESTING AND 
STRATEGIC ISSUES 

A template for software testing must be designed in advance so that a set of steps, into 
which we can place specific test case design techniques and testing methods, are 
defined. 

A number of testing strategies have been defined which provide the developer with a 
template for testing. These strategies have the following characteristics: 

 Testing begins at the component level and works outward towards the integration 
of the entire computer program. 

 Different testing techniques can be adopted at different points of time. 

 Testing is conducted by the software developer and an independent testing group 
for large software. 

 Testing is different from debugging but debugging must be included in any testing 
strategy. 

A testing strategy must include low-level tests to verify small source code segments as 
well as high-level tests to validate major system functions against customer 
requirements. Steps in the defining the test strategy must account for the amount of 
work completed and the problems to surface as early as possible. 

11.2.1 Verification and Validation 

Software testing is often referred to as Verification and Validation. Verification refers 
to the set of activities that ensure that the software correctly implements a specific 
function. Validation refers to a different set of activities that ensure that the software 
that has been built is traceable to the customer requirements 
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Verification: Are we building the product right? 

 Validation: Are we building the right product? 

The V&V comprises of a lot of activities that have already been covered as a part of 
Software Quality Assurance (SQA). 

V&V include activities like Formal Technical Reviews (FTR), quality and 
configuration audits, performance monitoring, simulation, feasibility study, 
documentation review, database review, development testing, qualification testing and 
installation testing, etc. 

11.2.2 Organizing for Software Testing 

Although software analysis and design are constructive activities from a psychological 
perspective, testing can be considered as a destructive task. Thus, if a software 
developer is made to test his/her own program, there are chances that he/she might 
demonstrate that the program is working as per the customer requirement and is error 
free, rather than uncovering errors. 

This may lead erroneous conceptions like: (1) developer should not do any testing at 
all, (2) software must be tested by third-party testers mercilessly and (3) the testers 
will be involved only when the testing begins. Each of these interpretations is wrong. 

The software developer is responsible for testing individual components of the 
program ensuring that each of these performs the functions that it is intended/ 
designed to be doing. In many cases, the developers must also carry out integration 
testing of the complete program structure. Only after the software architecture is 
complete, the Independent Test Group (ITG) is involved. 

The role of an independent test group is to remove the problems associated with the 
builder testing the build. Independent testing removes the conflict of interests that may 
be present otherwise. 

The ITG is a part of the software development team i.e. it gets involved at the time of 
specification and remains involved throughout the project. At times, they may be a 
part of the SQA group, which leads to higher degree of independence. 

11.2.3 Software Testing Strategy 

The strategy of software testing can be viewed in the context of a spiral model as 
shown in Figure 11.1. Unit testing begins at the vortex of the spiral and lays emphasis 
on each unit of the software as implemented in the source code. Testing progresses by 
moving outward along the spiral to integration testing, this focuses on design and 
construction of the software architecture. One step outward lies the validation testing, 
where requirements captured during the requirements analysis stage are validated 
against the software built. Finally, we arrive at the system testing, where the software 
and the other system elements are tested as a whole. 
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 Figure 11.1: Testing Strategy 

Testing is carried out in a series of four steps. Initially, the tests focus on individual 
components, guaranteeing that they function properly as a unit. Hence, the name unit 
testing. It involves white-box testing to ensure complete coverage and error detection. 
Next, the components must be assembled to from the complete software. Integration 
testing addresses the issues related to problem verification and program construction. 
It mostly includes black-box testing technique. After the software is integrated, 
validation criteria are tested. Validation testing provides final assurance that software 
meets all functional, behavioral and performance requirements. It uses black-box 
testing techniques. The last high-order step is system testing. It verifies that all the 
elements coordinate properly and that the overall system functionality is achieved. 

11.2.4 Strategic Issues 

The best of testing strategies will fail if some issues are not looked into properly. 
These issues must be addressed to ensure successful software testing strategy. 

 Specify product requirements in a quantifiable manner long before the testing 
begins: Testing assesses a lot of characteristics like portability, maintainability 
and usability other than just finding errors. Thus, these requirements must be 
specified in a quantifiable manner so that the testing results are unambiguous. 

 Objectives of testing must be stated clearly: The testing objectives must be stated 
in measurable terms. 

 Understand the software users and create a profile for each user category: Use-
cases that describe the interaction of the classes of users can reduce overall testing 
efforts by concentrating on the actual use of the product. 

 Develop a testing plan that emphasizes on rapid cycle testing: The testing must 
be done in cycles so that the feedback from each level can be used to control the 
level of quality and the corresponding test strategies. 

 Use effective formal technical reviews as a filter prior to testing: FTRs cab be 
equally effective in finding errors. They reduce the overall testing time. 

 Develop a continuous improvement approach for testing process: The test 
strategy should be measured. The metrics collected during testing process should 
be used as a part of statistical process control. 

11.3 UNIT TESTING 

Unit testing focuses on verification of individual units or modules of software. Using 
the design, important control paths are identified and tested to find errors within the 
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module boundary. The unit testing is white-box oriented and can be conducted in 
parallel for multiple components. 

                                

Figure 11.2: Unit Testing 

It involves running a module in isolation from the rest of the software by preparing 
test cases and comparing the actual results with the expected results as specified by 
the specifications and design. One of its purposes is to find and remove as many errors 
in the software as practical.  

11.3.1 Advantages of Unit Testing 

 The size of a module is small enough to locate errors comparatively easily. 

 The module is small enough to be able to test it in an exhaustive fashion. 

 Confusing interactions of multiple errors in different parts of the software are 
eliminated. 

However, there are problems associated with running a program in isolation. The 
biggest problem is how to run a module in isolation, without anything to call it and 
without anything being called by it. One approach is to build an appropriate routine to 
call it and the stubs to be called by it or to simply insert output statements. 

These additional costs of writing code, called scaffolding, although include  
effort important to testing but are not delivered in the actual product, as shown in 
Figure 11.3. 

 

User 
input/ 
output Driver 

Test 
module 

Stub Stub Stub 

Parameter out 

Parameter returned 

Figure 11.3: Scaffolding required to Test a Program Unit 
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Selective testing of execution paths: Test cases should be designed to detect 
maximum errors due to erroneous computations, incorrect comparisons or improper 
control flow. Basis path and loop testing are used to find a broad array of path errors. 

Good design ensures that error conditions are anticipated and error-handling paths be 
set up to reroute or terminate processing when an error occurs. This approach is called 
anti-bugging.  

The various errors that must be checked for while testing are as under: 

a. Error description is unintelligible. 

b. Error noted does not correspond to error encountered. 

c. Error condition causes system intervention prior to error handling. 

d. Exception-condition processing is incorrect. 

e. Error description does not provide enough information to assist in the location of 
the cause of the error. 

Boundary testing is the most important task of unit testing. Software often fails at 
boundaries. 

Check Your Progress 1 

 Fill in the blanks: 

1. Software often fails at ......................... 

2. Confusing interactions of multiple errors in different parts of the software 
are eliminated using ......................... 

3. ................. removes the conflict of interests that may be present otherwise. 

11.4 INTEGRATION TESTING 

Integration testing is the technique used for constructing the program structure and at 
the same time carrying out tests to find errors associated with interfacing. The 
objective is to build a program using the tested unit components as per design. 

                                 

Figure 11.4: Integration Testing 
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There are several classical integration strategies like, top-down integration, bottom-up 
integration, regression testing, smoke testing, etc. These are discussed in detail here. 

11.4.1 Top-down Integration 

Top-down integration testing is an incremental approach towards to construct a 
program structure. Modules are integrated by moving downward through the control 
hierarchy, beginning with the main control module. Modules subordinates to the main 
control module are included into the structure in either the depth-first or breadth first 
manner. 

Depth-first integration integrates all components on a major control path of the 
structure. This selection of major path is arbitrary and depends on the application. 
Referring to Figure 11.5, the components C1, C2, C5 would be integrated first, 
followed by C8 or C6. Then, the central and right hand control paths are built. 
Breadth-first integration includes all the components that are direct subordinates at 
each level, moving across the structure horizontally. From the Figure 11.5, C2, C3, C4 
would be integrated first followed by C5, C6, and so on. 

       

C8 

C2 

C5 C6 C7 

C4 C3 

C1 

Figure 11.5: Top-down Integration 

The integration step is performed in a series of five steps: 

a. The main module is used as a test driver and stubs are substituted for all 
components directly subordinate to the main control module. 

b. Subordinate stubs are replaced by the actual components depending upon the 
integration approach. 

c. Tests are conducted as each component is integrated. 

d. On completing the tests for each set, another stub is replaced with the real 
component. 

e. Regression testing may be conducted to ensure that new errors have not been 
introduced. 

Top down strategy can lead to logical problems. The most common of these problems 
occurs when processing at low levels is required to test the higher levels. 
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11.4.2 Bottom-up Integration 

Bottom-up Integration testing, begins construction with atomic modules. This 
technique eliminates the need for stubs as the components that have to be integrated 
are available for processing. It can be implemented using the following steps:  

a. Low-level components are combined into clusters that perform a specific software 
sub-function. 

b. A driver is written to coordinate test case input and output. 

c. The cluster is tested. 

d. Drivers are removed and clusters are combined moving upward in the program 
structure. 

 

 

C2 

D1 D2 

 

C3 
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C1 

 

  

   

 

 

 

Figure 11.6: Bottom-up Integration 

The various clusters in Figure 11.6 have been highlighted differently. 

11.4.3 Regression Testing 

Every time a new module is added, as a part of integration testing, the software 
changes. These changes may lead to problems with functions that were previously 
working fine. Thus, regression testing is the re-execution of some subset of tests that 
have been conducted already to ensure that changes have not lead to undesired side 
effects. 

The regression test case contains three different classes of test cases: 

 A representative sample of tests that will execute all software functions. 

 Additional tests that focus on functions that are likely to be affected by the 
change. 

 Tests that focus on the software components that have been changed. 
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Background 

Experience has shown that as software is developed, this kind of reemergence of faults 
is quite common. Sometimes it occurs because a fix gets lost through poor revision 
control practices (or simple human error in revision control), but often a fix for a 
problem will be "fragile" in that it fixes the problem in the narrow case where it was 
first observed but not in more general cases which may arise over the lifetime of the 
software. Finally, it has often been the case that when some feature is redesigned, the 
same mistakes will be made in the redesign that were made in the original 
implementation of the feature. 

Therefore, in most software development situations it is considered good practice that 
when a bug is located and fixed, a test that exposes the bug is recorded and regularly 
retested after subsequent changes to the program. Although this may be done through 
manual testing procedures using programming techniques, it is often done using 
automated testing tools. Such a test suite contains software tools that allow the testing 
environment to execute all the regression test cases automatically; some projects even 
set up automated systems to automatically re-run all regression tests at specified 
intervals and report any failures (which could imply a regression or an out-of-date 
test). Common strategies are to run such a system after every successful compile (for 
small projects), every night, or once a week. Those strategies can be automated by an 
external tool, such as BuildBot. 

Regression testing is an integral part of the extreme programming software 
development method. In this method, design documents are replaced by extensive, 
repeatable, and automated testing of the entire software package at every stage in the 
software development cycle. 

Traditionally, in the corporate world, regression testing has been performed by a 
software quality assurance team after the development team has completed work. 
However, defects found at this stage are the most costly to fix. This problem is being 
addressed by the rise of developer testing. Although developers have always written 
test cases as part of the development cycle, these test cases have generally been either 
functional tests or unit tests that verify only intended outcomes. Developer testing 
compels a developer to focus on unit testing and to include both positive and negative 
test cases. 

Uses 

Regression testing can be used not only for testing the correctness of a program, but 
often also for tracking the quality of its output. For instance, in the design of a 
compiler, regression testing should track the code size, simulation time and time of the 
test suite cases. 

11.4.4 Smoke Testing 

Smoke testing is an integration testing approach that is mainly used for testing shrink-
wrapped software products. It is designed as a pacing mechanism for time-critical 
projects giving a chance for the project team to assess the software on a frequent basis. 
Thus, smoke testing includes the following activities: 

 Software components that have been translated into code are clubbed together in 
the build. A build comprises of data files, libraries, reusable modules, etc. 

 A series of tests will be defined to uncover the errors that are potential risks to the 
program functioning. 

 The build is integrated with other builds and the entire product is smoke tested 
daily. This can be carried out using a top-down or bottom-up approach. 
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Smoke testing is done by developers before the build is released to the testers, or by 
testers before accepting a build for further testing. Microsoft claims that after code 
reviews, smoke testing is the most cost effective method for identifying and fixing 
defects in software. 

In software engineering, a smoke test generally consists of a collection of tests that 
can be applied to a newly created or repaired computer program. Sometimes the tests 
are performed by the automated system that builds the final software. In this sense a 
smoke test is the process of validating code changes before the changes are checked 
into the larger product’s official source code collection or the main branch of source 
code. 

In software testing, a smoke test is a collection of written tests that are performed on a 
system prior to being accepted for further testing. This is also known as a build 
verification test. This is a "shallow and wide" approach to the application. The tester 
"touches" all areas of the application without getting too deep, looking for answers to 
basic questions like, "Can I launch the test item at all?", "Does it open to a window?", 
"Do the buttons on the window do things?". 

The purpose is to determine whether or not the application is so badly broken that 
testing functionality in a more detailed way is unnecessary. These written tests can 
either be performed manually or using an automated tool. When automated tools are 
used, the tests are often initiated by the same process that generates the build itself. 
This is sometimes referred to as "rattle" testing - as in "if I shake it does it rattle?" 

Thus, smoke testing can be defined as the testing carried out on the system from end-
to-end. It need not be exhaustive but expose major problems. The smoke tests should 
be thorough enough that if the build passes, it can be assumed that the program is 
stable enough to be testes even more thoroughly. 

The various benefits of smoke testing are as follows: 

 Integration risk is minimized: As the smoke testing is done regularly and 
thoroughly, all the incompatibilities and other show-stopper errors are detected 
early thus reducing the serious impact when the errors are detected at later stages. 

 The quality of the end-product is improved: Because the approach is integration 
oriented, it will uncover both functional and architectural errors and component-
level design defects. Because of early defect correction, the end product is better 
in quality. 

 Error diagnosis and correction are simplified: Errors detected during smoke 
testing are normally associated with new software increments. Thus, the error 
detection and correction is easier. 

 Progress is easier to assess: Because each day more software is integrated and 
checked to work properly, it gives indication of the progress being made daily to 
the managers. 

11.4.5 Documentation for Integration Testing 

A test specification document contains the overall integration plan of the software and 
a description of specific test cases. This document contains the test plan and a test 
procedure, is a product of the software process and is a part of the software 
configuration. 

The below mentioned criteria and corresponding test cases are applied for all test 
phases: 

 Interface integrity: Internal and external interfaces are tested as each module is 
integrated into the structure. 
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 Functional integrity: Tests designed to detect functional errors are carried out. 

 Information content: Tests designed to detect errors related to local or global data 
structures are carried out. 

 Performance: Tests designed to verify the performance bounds identified during 
software design are carried out. 

A history of test results, problems or peculiarities is recorded in the Test specification. 
This information is important during software maintenance. 

Integration Testing Steps  

Integration Testing typically involves the following Steps:  

Step 1:  Create a Test Plan  

Step 2:  Create Test Cases and Test Data  

Step 3:  If applicable create scripts to run test cases  

Step 4:  Once the components have been integrated execute the test cases  

Step 5:  Fix the bugs if any and re test the code  

Step 6:  Repeat the test cycle until the components have been successfully integrated  

Integration Test Plan 

As you may have read in the other articles in the series, this document typically 
describes one or more of the following:  

 How the tests will be carried out  

 The list of things to be Tested  

 Roles and Responsibilities  

 Prerequisites to begin Testing  

 Test Environment  

 Assumptions  

 What to do after a test is successfully carried out  

 What to do if test fails  

 Glossary  

Writing an Integration Test Case 

Simply put, a Test Case describes exactly how the test should be carried out.  

The Integration test cases specifically focus on the flow of data/information/control 
from one component to the other.  

So the Integration Test cases should typically focus on scenarios where one 
component is being called from another. Also the overall application functionality 
should be tested to make sure the app works when the different components are 
brought together.  

The various Integration Test Cases clubbed together form an Integration Test Suite  

Each suite may have a particular focus. In other words different Test Suites may be 
created to focus on different areas of the application.  
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As mentioned before a dedicated Testing Team may be created to execute the 
Integration test cases. Therefore the Integration Test Cases should be as detailed as 
possible.  

Sample Test Case Table 

Test 
Case ID 

Test Case 
Description 

Input 
Data 

Expected 
Result 

Actual 
Result 

Pass/Fail Remarks 

       

Additionally the following information may also be captured:  

a)  Test Suite Name  

b)  Tested By  

c)  Date  

d)  Test Iteration (One or more iterations of Integration testing may be performed)  

 

Working towards Effective Integration Testing 

There are various factors that affect Software Integration and hence Integration 
Testing:  

1.  Software Configuration Management: Since Integration Testing focuses on 
Integration of components and components can be built by different developers 
and even different development teams, it is important the right version of 
components are tested. This may sound very basic, but the biggest problem faced 
in n-tier development is integrating the right version of components. Integration 
testing may run through several iterations and to fix bugs components may 
undergo changes. Hence it is important that a good Software Configuration 
Management (SCM) policy is in place. We should be able to track the components 
and their versions. So each time we integrate the application components we know 
exactly what versions go into the build process.  

2. Automate Build Process where Necessary: A lot of errors occur because the 
wrong version of components were sent for the build or there are missing 
components. If possible write a script to integrate and deploy the components this 
helps reduce manual errors.  

3. Document: Document the Integration process/build process to help eliminate the 
errors of omission or oversight. It is possible that the person responsible for 
integrating the components forgets to run a required script and the Integration 
Testing will not yield correct results.  

4. Defect Tracking: Integration Testing will lose its edge if the defects are not 
tracked correctly. Each defect should be documented and tracked. Information 
should be captured as to how the defect was fixed. This is valuable information.  
It can help in future integration and deployment processes.  

11.5 VALIDATION TESTING 

After the software has been integration tested and all the interface errors have been 
detected and fixed, a final round of testing is carried out, it is validation testing. 
Validation succeeds when software functions the way the customer expects it to. 
Validation specification contains the relevant information required to carry out 
validation testing. 
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Validation testing is carried out by performing a series of black-box tests that ensure 
that the software is in conformance with the requirements. Both the plan and 
procedure are defined to ensure that all the behavioral, functional, procedural, 
performance, documentation, etc. is correct and all requirements have been met. 

After the validation tests are carried out, it may lead to two possibilities: (1) the 
function is in agreement with the specification and are acceptable or (2) there exists 
some deviations from the specification and deficiency list is created. These 
deficiencies need some time to get fixed and have to be discussed with the customer. 

11.5.1 Configuration Review 

Configuration review is an important part of validation testing. Its main aim is to 
ensure that all elements of software configuration are properly developed and 
cataloged. It is also called audit. 

Software audit can mean: 

 a software licensing audit, where a user of software is audited for licence 
compliance  

 software quality assurance, where a piece of software is audited for quality  

 a software audit review, where a group of people external to a software 
development organisation examines a software product  

 a physical configuration audit  

 a functional configuration audit 

Objectives and Participants 

"The purpose of a software audit is to provide an independent evaluation of 
conformance of software products and processes to applicable regulations, standards, 
guidelines, plans, and procedures". The following roles are recommended: 

 The Initiator (who might be a manager in the audited organization, a customer or 
user representative of the audited organization, or a third party), decides upon the 
need for an audit, establishes its purpose and scope, specifies the evaluation 
criteria, identifies the audit personnel, decides what follow-up actions will be 
required, and distributes the audit report.  

 The Lead Auditor (who must be someone "free from bias and influence that could 
reduce his ability to make independent, objective evaluations") is responsible for 
administrative tasks such as preparing the audit plan and assembling and 
managing the audit team, and for ensuring that the audit meets its objectives.  

 The Recorder documents anomalies, action items, decisions, and 
recommendations made by the audit team.  

 The Auditors (who must be, like the Lead Auditor, free from bias) examine 
products defined in the audit plan, document their observations, and recommend 
corrective actions. (There may be only a single auditor.)  

 The Audited Organization provides a liaison to the auditors, and provides all 
information requested by the auditors. When the audit is completed, the audited 
organization should implement corrective actions and recommendations. 

11.5.2 Alpha and Beta Testing 

When custom software is built for a customer, a series of acceptance tests are carried 
out to enable the customer to validate all the requirements. These tests are conducted 
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by the end user right from an informal manner to a systematic and planned series of 
tests. This may continue over a period of weeks or months. Most software builders use 
a process called alpha and beta testing to detect errors that only the end-user is able to 
find. 

The alpha test is carried out at the developer’s site by the customer. The software 
engineer, here records all the errors and usage problems. These tests are conducted in 
a controlled environment. 

The beta tests are carried out at more than one customer sites by the end users of the 
software. The developer is not normally present for this type of testing activities. 
Thus, it is actually a live testing of the software in an environment that is not 
controlled by the developer. All the problems are recorded by the customer and are 
reported to the developer. Beta testing follows the alpha testing phase. 

11.6 SYSTEM TESTING  

System testing is a means to carry out a series of tests whose primary purpose is to 
fully exercise the computer based system. The tests are carried out to ensure that all 
system elements have been integrated properly and perform the desired functions as 
allocated. We will discuss the various types of system testing techniques in detail here. 

System testing is black box testing, performed by the Test Team, and at the start of the 
system testing the complete system is configured in a controlled environment. The 
purpose of system testing is to validate an application's accuracy and completeness in 
performing the functions as designed. System testing simulates real life scenarios that 
occur in a "simulated real life" test environment and test all functions of the system 
that are required in real life. System testing is deemed complete when actual results 
and expected results are either in line or differences are explainable or acceptable, 
based on client input. 

Upon completion of integration testing, system testing is started. Before system 
testing, all unit and integration test results are reviewed by SWQA to ensure all 
problems have been resolved. For a higher level of testing it is important to understand 
unresolved problems that originate at unit and integration test levels. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.7: System Testing 
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11.6.1 Recovery Testing 

Recovery testing is a system testing technique the causes the software to fail because 
of various reasons and verify that the recovery is being properly performed. In case of 
an automatic recovery, operations like check-pointing, re-initialization, data recovery 
and restart are checked for correctness. If the recovery requires human intervention, 
the mean-time-to-repair (MTR) is calculated to determine whether it is within the 
accepted limits. 

Recovery testing is basically done in order to check how fast and better the application 
can recover against any type of crash or hardware failure etc. Type or extent of 
recovery is specified in the requirement specifications. It is basically testing how well 
a system recovers from crashes, hardware failures, or other catastrophic problems 

11.6.2 Security Testing 

Security testing is used to verify that the protection mechanism built into the system is 
capable enough to protect it from improper penetration. The system security must be 
tested for vulnerability from both frontal and rear attack. 

During security testing the tester pays the role of an individual who wishes to enter the 
system by acquiring passwords, may attack the software with customized software to 
break into the system security, etc. 

A good design must ensure that the penetration cost is more than the value of 
information obtained. 

Security testing has recently moved beyond the realm of network port scanning to 
include probing software behavior as a critical aspect of system behavior. 
Unfortunately, testing software security is a commonly misunderstood task. 

11.6.3 Stress Testing 

Stress testing executes the system in a manner that requires resources in abnormal 
quantity, frequency or volume by designing test cases that generate multiple interrupts 
per second, which require maximum memory and other resources, which may cause 
the thrashing of the virtual operating system, etc.  

A variation of stress testing is sensitivity testing. In certain cases a small range of data 
contained within the bounds of valid data for a program may cause severe errors and 
performance degradation. It attempts to detect the data combinations within valid 
input classes that may cause instability or incorrect processing. 

Stress testing deals with the quality of the application in the environment. The idea is 
to create an environment more demanding of the application than the application 
would experience under normal workloads. This is the hardest and most complex 
category of testing to accomplish and it requires a joint effort from all teams.  

A test environment is established with many testing stations. At each station, a script 
is exercising the system. These scripts are usually based on the regression suite. More 
and more stations are added, all simultaneous hammering on the system, until the 
system breaks. The system is repaired and the stress test is repeated until a level of 
stress is reached that is higher than expected to be present at a customer site.  

Race conditions and memory leaks are often found under stress testing. A race 
condition is a conflict between at least two tests. Each test works correctly when done 
in isolation. When the two tests are run in parallel, one or both of the tests fail. This is 
usually due to an incorrectly managed lock.  
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A memory leak happens when a test leaves allocated memory behind and does not 
correctly return the memory to the memory allocation scheme. The test seems to run 
correctly, but after being exercised several times, available memory is reduced until 
the system fails.  

11.6.4 Performance Testing 

Performance testing is designed to test the run-time performance of software after it 
has been integrated. It occurs throughout all steps of the integrated testing. 
Performance testing at the module level can also be carried out during white-box 
testing. 

Performance tests are at time coupled with stress testing and require both software and 
hardware instrumentation, in order to measure resource utilization. 

Performance Testing assesses an application on speed, scalability and stability. 
Essentially, it gauges the application's response to user requests under expected 
circumstances and determines its stability and limits under stressful situations. 

In simple terms, performance tests are designed to simulate a particular workload. The 
workload is defined as the total burden of activity placed on the application. This 
burden consists of a number of virtual users who process a defined set of transactions 
in a specified time period. Assigning the proper workload is one of the most crucial 
parts of any performance analysis. Testing should be conducted to assess performance 
for three workload categories: 

 Steady state: A constant number of users using the application for the entire 
duration of the test; this primarily examines the application for stress and stability.  

 Increasing workload: Used to assess the maximum user load the application can 
take; virtual users are added in steps until the application no longer responds.  

 Scenario-based: This is designed based on the business users' inputs on typical 
workloads in a day and is the most realistic test. 

Types of Performance Testing 

Different types of performance testing must be planned and executed for an 
application/product depending on scope/need. 

 Load testing helps to ensure the system performs per requirements under the 
anticipated load level for the purpose of identifying problems in resource 
contention, response times. It also determines the minimum configuration under 
which the system can perform satisfactorily.  

 Stress testing probes the behavior of the application under very heavy load to 
determine its capacity limits or to identify limits imposed by the product design or 
its environment.  

 Endurance testing uncovers issues pertaining to non-release of system resources 
can be identified only when it is run over long periods of time with normal user 
loads.  Endurance Testing helps assess the application's stability over long periods 
of time.  

Test Approach 

A best practice test approach begins in the development process and is part of the 
application's planning and strategy. The active phases of testing include design, 
execution and reporting.  
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Design: In the design phase, test scenarios are drafted based on user inputs on 
transaction volume, typical usage pattern of the application and typical user loads 
accessing parts of the application. 

Each of the high-level scenarios consists of a number of different functional 
(transaction) operations to be executed by varying number of users at the same point 
in time. This would, more or less, reflect the real-time usage of the system in 
production. 

Tool-based execution: The high-level scenarios are translated into test cases and 
written into test scripts for execution by a performance-testing tool. Rather than 
requiring real users to execute scenarios in tandem, the tool would facilitate creation 
of virtual users without requiring the same hardware base. 

A tool enables simulation of test runs for various workload models emulating real-
time user roles and access patterns. Test runs can be controlled as desired and even 
performed for an extended duration of time. Further, tools also provide monitoring 
logs and performance metrics both as reports and graphs for easy interpretation and 
analysis. 

Reports and Metrics: Performance metrics include statistics on system resources, 
performance (%CPU time, interrupts, etc.), memory, logical disc operations, and 
network interface details. Standard performance testing tools are capable of producing 
a variety of reports and graphs to show measurements of performance. 

Check Your Progress 2 

 State whether the following statements are true or false: 

1. Performance testing is designed to test the run-time performance of 
software before it has been integrated. 

2. The alpha test is carried out at the developer’s site by the developer.  

3. Validation succeeds when software functions the way the customer expects 
it to. 

11.7 DEBUGGING 

The goal of testing is to identify errors in the program. The process of testing gives 
symptoms of the presence of an error. After getting the symptom, we begin to 
investigate to localize the error i.e. to find out the module causing the error. This 
section of code is then studied to find the cause of the problem. This process is called 
debugging. Hence, debugging is the activity of locating and correcting errors. It starts 
once a failure is detected. 

11.7.1 Debugging Techniques 

Although developers learn a lot about debugging from their experiences, but these are 
applied in a trial and error manner. Debugging is not an easy process as per human 
psychology as error removal requires the acceptance of error and an open mind willing 
to admit the error. 

However, Pressman explains certain characteristics of bugs that can be useful for 
developing a systematic approach towards debugging. These are: 

 The symptoms and cause may be geographically remote. That is, the symptom 
may appear in one part of the program, while the cause may actually be located in 
other part. Highly coupled programs can worsen this situation. 

 The symptom may disappear (temporarily) when another error is corrected. 
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 The symptom may actually be caused by non errors (e.g. round off inaccuracies). 

 The symptom may be caused by a human error that is not easily traced. 

 The symptom may be result of timing problems rather than processing problems. 

 It may be difficult to accurately reproduce input conditions (e.g. a real time 
application in which input ordering is indeterminate). 

 The symptom may be intermittent. This is particularly common in embedded 
systems that couple hardware with software inextricably. 

 The symptom may be due to causes that are distributed across a number of tasks 
running on different processors. 

11.7.2 Debugging Approaches 

The debugging approach can be categorized into various categories. The first one is 
trial and error. The debugger looks at the symptoms of the errors and tries to figure out 
that from exactly which part of the code the error originated. Once found the cause, 
the developer fixes it. However, this approach is very slow and a lot of time and effort 
goes waste. 

The other approach is called backtracking. Backtracking means to examine the error 
symptoms to see where they were observed first. One then backtracks in the program 
flow of control to a point where these symptoms have disappeared. This process 
identifies the range of the program code which might contain the cause of errors. 
Another variant of backtracking is forward tracking, where print statements or other 
means are used to examine a sequence of intermediate results to determine the point at 
which the result first becomes wrong. 

The third approach is to insert watch points (output statements) at the appropriate 
places in the program. This can be done using software without manually modifying 
the code. 

The fourth approach is more general and called induction and deduction.  

The induction approach comes from the formulation of a single working hypothesis 
based on the data, analysis of the existing data and on especially collected data to 
prove or disprove the working hypothesis. The inductive approach is explained in 
Figure 11.8. 
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Figure 11.8: Inductive Debugging Approach 
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The deduction approach begins by enumerating all causes or hypothesis, which seem 
possible. Then, one by one, particular causes are ruled out until a single one remains 
for validation. 
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Refine 
remaining 
hypothesis 

Use process 
of elimination 

c
a
n 

cannot 

None left 

Figure 11.9: Deductive Debugging Approach 

11.8 LET US SUM UP 

Software testing accounts for the largest share of total technical efforts put in the 
software process. Its objective is to uncover errors. In order to fulfill this objective, a 
series of test steps are planned and executed – unit, integration, validation and system 
testing. 

Unit and integration tests concentrate on functional verification and then integrating 
these components together into a program structure. Validation tests ensure 
traceability to requirements and system testing validates software once it has been 
incorporated into a larger system. Unlike testing, debugging can be considered as an 
art of resolving errors encountered while testing. Starting with the symptoms’ 
identification it must track down to the cause of error. 

11.9 LESSON END ACTIVITIES 

1. How do design attributes facilitate debugging? 

2. List the various problems that can come up as a result of adding debugging 
statements into the code. 

3. Is unit testing necessary in all scenarios? Provide examples to justify your answer. 

11.10 KEYWORDS 

MTR: Mean-Time-to-Repair 

FTR: Formal Technical Reviews 

SQA: Software Quality Assurance 

ITG: Independent Test Group 

Verification: Verification refers to the set of activities that ensure that the software 
correctly implements a specific function. 

Validation: Validation refers to a different set of activities that ensure that the 
software that has been built is traceable to the customer requirements. 

Unit testing: Unit testing begins at the vortex of the spiral and lays emphasis on each 
unit of the software as implemented in the source code. 
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Anti-bugging: The process of anticipating errors and setting up error-handling paths 
to reroute or terminate processing when an error occurs is called anti-bugging. 

Integration testing: Integration testing is the technique used for constructing the 
program structure and at the same time carrying out tests to find errors associated with 
interfacing.  

Smoke testing: Smoke testing is an integration testing approach that is mainly used for 
testing shrink-wrapped software products. 

Configuration review: A review carried out to ensure that all elements of software 
configuration are properly developed and cataloged. 

System testing: System testing is a means to carry out a series of tests whose primary 
purpose is to fully exercise the computer based system. 

Recovery testing: Recovery testing is a system testing technique the causes the 
software to fail because of various reasons and verify that the recovery is being 
properly performed. 

Security testing: Security testing is used to verify that the protection mechanism built 
into the system is capable enough to protect it from improper penetration.  

Performance testing: Performance testing is designed to test the run-time 
performance of software after it has been integrated.  

11.11 QUESTIONS FOR DISCUSSION 

1. What is the difference between system testing and validation testing? 

2. Does exhaustive testing ensure 100% defect free software? 

3 Discuss the various software testing strategies in detail. 

 Check Your Progress: Model Answers 

 CYP 1 

 1. Boundaries 

 2. Unit testing 

 3. Independent testing 

 CYP 2 

 1. False 

 2. False 

 3. True 
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MODEL QUESTION PAPER 
MCA 

Third Year 

Sub: Software Testing 

Time: 3 hours                Total Marks: 100 

Direction: There are total eight questions, each carrying 20 marks. You 
have to attempt any five questions. 

 

1. Is complete testing possible? Justify with proper reasoning. 

2. How can we measure the importance of a bug? Give a mathematical formula to 
measure the same. 

3. Discuss the difference between worst case and ad-hoc test case performance 
evaluation method of testing. 

4. What are predicates, path predicates and achievable paths? Explain the relation 
between all of them with respect to software testing. 

5. Explain the role of walkthroughs and reviews in the transaction based testing. 

6. Compare the effectiveness of the various strategies for data-flow testing. 

7. Describe transition bugs giving reference to the unreachable and dead states. 

8. What is client-server architecture? What are the problems encountered while 
testing these applications? 
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